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1. Preface

These notes were prepared for a course on game theory and its applications. They are preliminary
and incomplete. The notes draw upon various published and unpublished sources. In particular,
motivation of the main topics, basic definitions, notation, and examples follow the introductory
textbooks by Martin Osborne (Osborne, 2004) and Joel Watson (Watson, 2008). The discussion
of more advanced topics builds upon the textbooks by Ariel Rubinstein and Martin Osborne (Ru-
binstein and Osborne, 1994) and Michael Maschler, Eilon Solan, and Shmuel Zamir (Maschler
et al., 2013). The exposition of a number of topics and applications follows insightful notes that
several authors have generously made available online, including Nageeb Ali, Dirk Bergemann,
Navin Kartik, Stephen Morris, Ilya Segal, Joel Sobel, and Steve Tadelis. While the current notes
benefit substantially from all such materials, I am the only responsible for any errors contained in
the current version. Suggestions and corrections are gratefully welcome.
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2. Introduction

2.1. Scope and Assumptions

In many interactions, people regard their well-beings as interdependent. Such individuals ac-
knowledge that the actions of others affect them and, likewise, that their own actions influence
the well-beings of others. We usually refer to such a sort of interactions as strategic interactions

and say that individuals act strategically in those cases. Strategic interactions are everywhere
around us. Automakers care about the advertising campaigns and pricing policies of their com-
petitors. Governments are aware that their diplomatic relations or commercial policies affect other
countries. Politicians care about the influence of their speeches in their constituencies. In sports,
coaches and players care about the decisions made by their team mates and rivals. We care about
how much private information we reveal to our friends and are affected by our friends’ actions.

That sort of interactions, however, are quite different from another category where everyone
perceives instead that the actions of a single person have no impact on the final outcome or the
well-beings of people. As consumers, we are aware that our individual purchasing choices do
not change the price of the product in large markets. Small farmers perceive that their individual
decisions do not influence the conditions in the international market for their agricultural produce.
In economics, this second category of situations is usually referred to as competitive interactions.
In such non-strategic environments, people are considered to act as price-takers.1

Game theory is a set of tools that allows us to analyze formally how individuals make decisions
in situations of strategic interaction. Competitive environments are, therefore, not included in the

1 This terminology comes from the most prominent case of such situations in economic relationships: a market for
a good with many consumers that demand the good and many firms that offer it. In such environments, each individual
is usually seen as very small compared to the size of the entire population in the market. As a consequence, it is
natural to consider that the actions of a single consumer (or a single firm) do not impact the final price of the good.
Consumers choose the quantities of the good they wish to demand (and firms choose the quantities they produce), but
each decision-maker takes the final price as given. In other words, in consonance with their negligible sizes within the
market, decision-makers believe that their individual actions alone are not able to influence the price of the product.



scope of game theory.2 In consonance with such a focus on strategic settings, game theory usually
considers situations where a relatively small number of individuals interact.3 We will use the term
game to refer to a particular situation of strategic interactions that we wish to study. Then, we will
refer to the decision-makers engaged in such interactions as the players of the game. Game theory
provides us with a scientific framework that helps understand how people behave in a variety of
strategic settings. To set up such a framework, however, we need to make particular assumptions
about what individuals know when they interact with others, and how they assess the best way(s)
to behave.

First, we need to be specific about the goals of the individuals and about how they behave to ac-
complish such goals. The most common assumption in game theory4 in this respect is that of (full)
rationality. Rationality can be viewed as a very mild assumption that simply requires that individu-
als have a clearly formed idea of what makes them happy and that, given the information available
to them in each situation, act so as to fulfill their happiness. In game theory, we will see that this
translates into individuals having some well-specified preferences about the outcomes obtained by
the combination of everyone’s actions and then choosing the actions that lead to the outcomes
they most prefer. Rationality says nothing about the form of the decision-makers’ preferences and
any coherent preferences can be accommodated by this assumption.5 Rationality, in particular,

2 Competitive situations, though, are in fact present in many environments and the implications of competitive
settings are of broad interest for economists and social scientists. A question of particular interest in competitive
settings is that of how competitive outcomes reconcile with socially desired goals (i.e., the study of efficiency or
of the social optimality of outcomes in competitive situations). The field of economics that systematically studies
competitive settings is that of competitive equilibrium theory.

3 On the other hand, competitive equilibrium theory explores environments where a large number of (relatively
small) individuals interact. Models of market games are usually seen as a bridge between the theoretical approaches
taken by game theory and by competitive equilibrium theory. Market games explore the formation of prices in markets
using techniques from game theory. Such models start with a relatively small number of decision-makers in the mar-
ket that are assumed to behave strategically. Then, the models explore how the outcomes of the strategic interactions
evolve as the number of individuals increase. Under certain conditions, the strategic outcomes converge to those pre-
dicted by the competitive equilibrium theory. In this way, market games can be seen as a game theoretical foundation
of competitive equilibrium models.

4 This is also the most commonly accepted assumption in any field of modern economics or social sciences that
follow a systematic scientific approach to study human behavior.

5 Economists have debated extensively about what basic premises must satisfy any coherent system of human
preferences and have came up with a set of fundamental conditions, usually called axioms. Whereas the typical axioms
in environments under certainty are fairly weak, the most commonly accepted axioms under uncertainty include one
controversial requirement: the independence (of irrelevant alternatives) axiom. The independence axiom allows us
to represent preferences under uncertainty in the convenient and tractable way of the expected utility form. The
independence axiom have often been challenged by experimental evidence and its implications about the expected
utility form representation are sometimes at odds with empirical findings. Motivated by the critiques raised from
the experimental and empirical feedback, alternative representations of preferences under uncertainty, in which the
independence axiom is either relaxed or dropped, have been proposed over the last decades. However, the simple
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does not require that individuals maximize their monetary payoffs or act selfishly. Rational indi-
vidual may act based on fairness and be willing to make sacrifices in the interests of others.6 To
put it simply, rationality only requires that individuals try to fulfill their happiness—whatever it is
that makes them happy—or, equivalently, that they seek the courses of actions that suit best their
preferences—regardless of the particular features of such preferences.

Secondly, to be more specific about the problems that the players face when trying to achieve the
outcomes that they most prefer, we need to be precise about what they know of the situations where
they have to decide. Players might be uncertain about aspects relevant to their well-beings and
would then need to assign probabilities on the occurrence of such aspects. A player has imperfect

information when, at some point during the play of the game, she lacks some information about
the description of the game. Not having full information about some aspect of the game during the
play generally implies that the player does not have all the strategically-relevant information when
she makes her choices. Often times, some players have more precise information than others about
such aspects. These cases are termed as situations with asymmetric information. All these features
are present in most real-life situations and, therefore, they need to be captured by the set of tools
provided by game theory. In this respect, game theory usually assumes that, before playing the

game, players are fully aware about what they will know and about what they will not know of the
situations where they will interact with others. In other words, before they make their decisions,
players are assumed to have full information about the entire description of the game they will be
involved in, even of those parts of the game where, at the moment of their decisions, they will
have imperfect information about aspects relevant for their well-beings. For instance, we can have
situations with imperfect and asymmetric information in which (prior to playing) a player knows
that, at a certain point, she will lack information about some relevant aspect while at the same time
having more information than another player.7

representation of preferences under the form of the expected utility, together with the lack of a unified theory that
encompasses the alternative models, have lead to that accepting the independence axiom—and therefore resorting to
the expected utility form—constitutes in practice the most used approach to deal with preferences under uncertainty.

6 For instance, if a decision-maker has altruistic interests and she prefers that others enjoy additional income even
at the expense of sacrificing her own money, then rationality says that she will seek to donate part of her income to
others. In this sense, there is nothing wrong in practice with that rational decision-makers may seek “non-material” or
“spiritual” goals, may incur in monetary losses, or may even inflict themselves what others would regard as physical
or emotional sufferings in the pursue of their happiness.

7 To put it simply, players have a precise description of situations where they will face uncertainty and even where
they will have imperfect information about some variable, or about the actions taken by others. In this sense, when a
player does not know the value of the variable, we capture this by considering that the unknown value is the realization
of a random variable. Then, the player is assumed to act as a statistician that knows the probability distribution of
the random variable. Likewise, when a player does not know other player’s actions, she will also assign probabilities,
usually termed as beliefs, to the set of possible actions.
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Thirdly, to determine their best ways to behave, players need to draw inferences, or form beliefs,
about how others make their own decisions. To deal with the inferences that each individual must
make about how others will behave, game theory usually considers that players not only know
fully the description of the game but that they also share a “common understanding” of such a de-
scription. The notion of common knowledge usually captures this idea of common understanding.
By common knowledge of a feature we understand that each player knows the feature itself, that
each player knows that each other player knows it, that each player knows that each other player
knows that each other player knows it, and so on, ad infinitum.8 Game theory usually assumes that,
prior to engaging in the game, players have common knowledge both about the fact that they are
rational decision-makers and about the entire description of the game they will play. In dynamic
interactions, nonetheless, sharing a common understanding of the description of the game does
not imply that the players always commonly known the information they have, or what they are
doing. When the play of the game takes place over time, players are assumed to share a common
understanding of the description of the game—including these parts where they possibly will have
imperfect information about some aspects—before they begin to play. However, during the play
some players may have different information than others.

Finally, to study how players behave according to game theory, we need to use a solution,
or equilibrium, notion that takes into account (i) how players think logically about how others
will play in the game and (ii) how they act in the light of such inferences in order to fulfill their
happiness. Furthermore, in order to be useful in explaining and predicting the behavior of decision-
makers, this equilibrium notion must exist for a fairly broad set of games and must satisfy certain
desirability properties. The Nash equilibrium—henceforth, NE—solution concept achieves all
these goals in a brilliant way. In addition to the assumptions already mentioned, the NE concept
requires that the players consider a (sometimes fictional) social institution, or meditator, that helps
them coordinate their actions in a way such that their beliefs and their actual actions be consistent.
Not surprisingly, for the NE to work, players need to have common knowledge of such a social

8 That one knows the feature itself is viewed as a zero-order iterated belief about the feature. That one knows that
other individual knows the feature is viewed as a first-order iterated belief. Knowing that other individual knows the
feature, and knows that one knows it is viewed as second order iterated belief about the feature. In this way, we can
deal in general with kth-order iterated beliefs about the feature. Thus, game theory usually assumes that players are
able to compute up to kth-order iterated beliefs about any feature that forms part of the description of the situations
in which they have to decide. Furthermore, that they are assumed to be able do so even when k tends to infinite.
Calculating relatively high-order iterated beliefs may be be seen as a too demanding computational requirement on the
individuals. Some models of the strand of the literature that deal with bounded rationality considerations (see, e.g.,
Rubinstein (1998)) relax this assumption and place restrictions on the kind of high-order inferences that individuals
may draw. For instance, some bounded rationality models consider that players are able to draw high-order iterated
beliefs about unknown variables only up to a certain bounded level.
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institution. We can rephrase this latter requirement as saying that players have common knowledge
about the rationale behind the NE notion itself.

To summarize, the methodological assumptions most commonly imposed by game theory are:

Assumption 2.1: Basic Assumptions

1. Players are rational decision-makers.

2. Players are fully informed about the description of the game that they will play.

3. Players know the NE solution concept.

4. Players have common knowledge about the three elements above.

Although the four assumptions above are present in most game theoretical analyses, game the-
ory tools still continue to be very useful when some of these assumptions are modified. To mention
a few usual requirements than can be perceived as too demanding in practical situations, it seems
hard to take for granted that people (i) can make all sorts of sophisticated computations when de-
ciding about their preferred courses of actions, (ii) are able to keep track of arbitrary high-order
beliefs about what they and others know, or (iii) represent their preferences using the particular
expected utility form. Added to these strong requirements, it is also commonplace that experi-
mental or empirical investigations fail to validate some of the implications of the theory. All such
unsatisfactory issues of the mainstream discipline have lead some economists to develop alterna-
tive game-theoretical models. To be clear, such models still use most of the standard tools but they
relax, or twist, some of the four above discussed basic assumptions. For instance, models where
players are assumed to have cognitive biases or make computations subject to bounded rational-

ity constraints have flourished in the last decades.9 Despite the pertinence and usefulness of such
alternative approaches, these notes will focus on the more conventional game theoretical approach
that uses all four assumptions listed above.

2.2. Historical Background
Earlier game theory formulations can be traced back to the works of French mathematicians

Augustin Cournot (1801-1877) and Emile Borel (1871-1956). Cournot introduced (in 1838) the
ideas underlying the concept of Nash equilibrium—in pure strategies—and reaction functions.

9 Rubinstein (1998)’s excellent textbook covers recent game theoretical developments under bounded rationality
considerations.
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Borel proposed (in 1921) the idea of mixed strategy. Hungarian native poli-mathematician John
von Neumann (1903-1957) is perhaps the most important figure in the early development of game
theory. In 1944, with the publication of their book Theory of Games and Economic Behavior, von
Neumann and Oskar Morgenstern established the grounds for the subsequent development of the
field as we know it today. In the early 1950’s, American mathematician John Forbes Nash (1928-
2015) made his seminal contributions to zero-sum games, non-cooperative game theory, and to
bargaining theory. In 1951, Nash proposed formally the nowadays ubiquitous notion of Nash equi-
librium and proved its existence for finite games. In 1952-1953, Lloyd Shapley made the earlier
contributions to the theory of cooperative games and introduced the solution concept for cooper-
ative games known as the Shapley value. In 1953, Harold Kuhn introduced formally the idea of
extensive form games. In 1957, Robert Luce and Howard Raiffa popularized game theory, with the
publication of Games and Decisions: Introduction and Critical Survey, among economists, psy-
chologists, sociologists, and political scientists. In 1960, Thomas Schelling launched his vision of
game theory as a unifying framework of strategic analysis for the social sciences with the publica-
tion The Strategy of Conflict. Schelling’s contribution is essential to the nowadays extensive use of
game theory to address problems of military conflict and diplomacy issues between countries. In
the late 1950’s and early 1960’s, Israeli mathematician Robert J. Aumann pioneered the studies of
long-term cooperation, in a series of works which can be regarded as the seminal contributions on
repeated games. Aumann’s figure has been immense to the development of game theory in many
respects. For instance, in 1976, he introduced formally the idea of common knowledge, which
stands as one of the most used assumptions in the theory. In 1974, Aumann introduced the solu-
tion concept of correlated equilibrium, from which the Nash equilibrium notion can emerge as a
special case. Correlated equilibrium has subsequently proved to be a key solution notion to address
contract theory questions and within the mechanism design research agenda. In 1967-1968 John
Harsanyi formalized his method for studying games with incomplete information, which has been
crucial to broaden the scope of applications for the theory. In 1975, German economist Reinhard
Selten introduced his most refined notion of subgame perfection for extensive form games. Game
theory has received immense appreciation and recognition within economics in the last decades.
The unified structure of the theory, together with its broad applicability to key questions raised in
the social sciences, have contributed to its fruitful development. In 1994, J. Harsanyi, J. Nash,
and R. Selten were awarded the Nobel prize in economics for their seminal contributions to game
theory. R. Aumann and T. Schelling were also awarded the Nobel prize in economics, in 2005,
for providing key contributions to the subsequent development of the theory, which allowed its
extension to other branches of the social sciences. Other Nobel laureates whose contributions to
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economics rest heavily on the set of analytical tools provided by game theory include: (i) George
Akerlof, Michael Spence, and Joseph Stiglitz (2001), for their contributions to information eco-
nomics; (ii) Leonard Hurwicz, Eric Maskin, and Roger Myerson (2007), for their contributions
to the study of incentives in markets and mechanism design; (iii) Alvin Roth and Lloyd Shapley
(2012), for their work on applied market design; (iv) Jean Tirole (2014), for his industrial organi-
zation insights to market power and regulation, and (v) Oliver Hart and Bengt Holmström (2016)
for their contributions to contract theory.

2.3. Non-Cooperative Games versus Cooperative Games
These notes restrict attention to non-cooperative game theory. Non-cooperative game theory

explicitly models individual decisions as primitives. Unlike this, cooperative game theory con-
siders instead joint or team actions as primitives in their models. For this reason, cooperative
game theory needs to assume the existence of binding agreements, which are established by the
players prior to playing the game. By taking an axiomatic approach, some strategic problems ben-
efit from a simpler treatment using cooperative games, relative to using the non-cooperative tools.
Nonetheless, given the crucial assumptions that the players need to be able to freely communi-
cate among them and reach binding agreements, the scope of cooperative games for applications
is considerably reduced compared to the sort of situations that can be suitably addressed using
non-cooperative games. For instance, cooperative games are useful for exploring decisions made
by committees, juries, political parties, or groups where it is compelling to consider that their
members must respect some binding agreements. In these notes, we will take the non-cooperative
philosophical approach that players act individually, without any previous binding agreements. In
this respect, non-cooperative game theory considers that the possibilities for communication or
agreements must be explicitly modeled, as the result of individual decisions. Though undoubtedly
useful, and quite relevant for some applications, cooperative game theory will not be discussed in
the current notes.
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3. Extensive Form Games

3.1. Definitions and Examples

The richest and most structured way of describing a strategic interaction is the extensive form

representation of the game. Extensive form games are quite convenient to describe situations
where the players move sequentially over time. In particular, in an extensive form game we can
keep track of when each player is due to decide, what each player knows when deciding, and what
outcomes are derived from how the players move over time. In theory, any real-world game where
players make their decisions sequentially can be represented as an extensive form game.1

Let me present the formal elements of an extensive form game with the aid of the following
example. Some notation is in order from here onwards. For a set Z, we will use ∆(Z) to indicate
the set of probability distributions on Z. Also, we will use exchangeably the terms probability

distribution and lottery.

Example 3.1. Consider the strategic (sequential) situation depicted in Figure 3.1. This game can
be described as follows. First, a player, named player 1, makes a choice between alternatives A,
B, and C. If she chooses alternative C, then the game ends, player 1 gets an outcome labelled as p

and the other player, named player 2, gets an outcome labelled as q. Upon the choice of C, player
2 is not called to play in this game. If player 1 chooses either alternative A or alternative B, then
player 2 is called to play in the game. Upon player 1 choosing alternative A, player 2 is given the
option to decide between alternatives D and E. After this choice by player 2, player 1 is called
again to play in this game. In this case, player 1 will not know whether player 2 has previously
chosen D or E and she will have the option to choose between alternatives F and G. If player 1
chooses alternative B, then player 2 is given the option to choose between alternatives H, I, and J.

1 In practice, however, because of the detailed description that it entails, the representation of some real-world
games can become very complex and even intractable. Representing the chess game, for instance, turns out unfeasible.
For this reason, in order to study particular dynamic strategic interactions, economic models aim at proposing very
simple/parsimonious games that capture the relevant elements of such situations.



The labels (x,y) at the end of the tree in the figure describe the outcomes that obtain, respectively,
player 1 (x) and player 2 (y).

F G
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F G
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H I J

B
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1

2

2

(a,b) (c,d) (e, f ) (g,h) (i, j) (k,l) (m,n)

(p,q)

Figure 3.1 – An Extensive Form Game with Imperfect Information

Formally, an extensive form game has the following elements.2

1. A finite set N ≡ {0,1, . . . ,n} of players, which will be indexed by i, j ∈ N. The player in-
dexed as player zero (i = 0) will in fact be present only in games with imperfect information.
When present, we will refer to player zero as Nature. The choices of player zero describe
the possible outcomes from extrinsic (or exogenous) uncertainty. Unlike this, the random
choices of any player i other than Nature give rise to intrinsic (or endogenous) uncertainty in
the game. Since we will allow players to make random choices, there will be always intrinsic
uncertainty in each game. There will be also extrinsic uncertainty if Nature is present in the
game. In this example, there are two players i ∈ N = {1,2} that interact with each other in
the game. There is no player zero or Nature. Thus, there is no extrinsic uncertainty.

2. For each player i ∈ N, a finite set of actions Ai, where an action taken by player i will be
denoted by ai ∈ A. Let A ≡ ∪i∈NAi, with generic element ak ∈ A, be the set of actions

available in the game, regardless of the name of the player that takes each particular action.
In this example, the set of actions available to player 1 is A1 = {A,B,C,F,G} and the set of
actions available to player 2 is A2 = {D,E,H, I,J}. The entire set of actions in the game is
A = A1∪A2 = {A, . . . ,J}.

2 The definition of extensive form game that is now standard in game theory is due to Kuhn (1953). The definition
used in these notes builds closely upon Rubinstein and Osborne (1994).
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3. A set Σ of sequences of actions σ = (σ0,a1, . . . ,ak, . . . ,aK), where K can be either finite or
infinite, which we will call histories. The set of histories Σ must satisfy the properties:

(a) There is a unique history σ0 ≡ /0 ∈ Σ which will be called the initial history, or root, of

the game.

(b) If σK = (σ0,a1, . . . ,ak, . . . ,aK) ∈ Σ , then σ k = (σ0,a1, . . . ,ak) ∈ Σ as well, for each
k < K. In this case, the history σK is called a successor of each σ k, each σ k is called
a predecessor of σK , and each σ k is called an immediate predecessor of σ k+1, for
k = 1, . . . ,K−1.

(c) If an infinite sequence σ = (σ0,a1, . . . ,ak, . . .) satisfies σ k = (σ0,a1, . . . ,ak) ∈ Σ for
each 1≤ k < ∞, then σ ∈ Σ .

A history σK = (σ0,a1, . . . ,ak, . . . ,aK) is terminal if it is finite (K < ∞) and there is no
action aK+1 ∈ A such that (a1, . . . ,ak, . . . ,aK,aK+1) ∈ Σ . We will use Σ̂ to denote the set of

terminal histories in the game and A(σ)≡
{

a ∈ A : (σ ,a) ∈ Σ
}

to denote the set of actions

immediately available upon the non-terminal history σ . In this example, the histories that
constitute Σ are

σ
0 = /0, σ

1 = (σ0,A), σ
2 = (σ0,B),σ3 = (σ0,C),

σ
4 = (σ0,A,D), σ

5 = (σ0,A,E),

σ
6 = (σ0,A,D,F), σ

7 = (σ0,A,D,G), σ
8 = (σ0,A,E,F), σ

9 = (σ0,A,E,G),

σ
10 = (σ0,B,H), σ

11 = (σ0,B, I), σ
12 = (σ0,B,J).

Clearly, σ0, . . . ,σ5 are non-terminal histories whereas σ6, . . . ,σ12 are terminal histories.

4. A function P : Σ \ Σ̂ → N that assigns a player P(σ) to each non-terminal history σ . The
function P is known as the player function of the game. In this example, the player function
is specified by P(σ0) = P(σ4) = P(σ5) = 1 and P(σ1) = P(σ2) = 2.

5. For each history σ where Nature plays (i.e., such that P(σ) = 0), a function

µ(· |σ) : A(σ)→ [0,1]

that assigns a probability µ(a |σ) ∈ [0,1] to each action a ∈ A(σ), that is, to each action im-
mediately available upon history σ . Each function µ(· |σ) will be called a prior at history σ

and the set of functions µ ≡ {µ(· |σ) : σ ∈ Σ with P(σ) = 0} will be a system of priors. In
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this example Nature does not play. In such cases, we say that there is no extrinsic uncertainty
in the game.

6. For each player other than Nature i ∈ N \{0}, a partition Hi of the set of histories

{σ ∈ Σ : P(σ) = i}

where she is due to play. To make the description of the information available to the players
consistent, we need to require that for each σ ,σ ′ ∈ hi, for each hi ∈ Hi, we must have
A(σ) = A(σ ′). Accordingly, we will use A(hi) to denote A(σ) for each σ ∈ hi. Each element
h of a partition Hi will be referred to as an information set where i plays. In consonance with
this, Hi is the set of all information sets where i plays and H ≡ {Hi}i∈N is the collection
of all the players’ sets of information sets. In this example, the sets of information sets of
the two players are given by

H1 =
{{

σ
0},{σ

4,σ5}},
H2 =

{{
σ

1},{σ
2}}.

Therefore, player 1 cannot distinguish between histories σ4 and σ5. Here, h =
{

σ4,σ5}
is the only non-trivial information set: it captures a situation where player 1 has imperfect
information about what is happening at some point during the game. Intuitively, she does
not know whether player 2 has previously chosen action D or action E. Then, player 2 is not
able to infer any new information by observing her available actions because A(

{
σ4,σ5}) =

{F,G}, as required by our “informational consistency” condition. Note that when drawing
trees for extensive form games, we draw ellipses, or dotted lines, between nodes to indicate
that the corresponding histories belong to the same information set. Both players are as-
sumed to share common knowledge of the description of the game before they actually play
it. In particular, player 1 knows that, at the point where she is called to play upon histories
σ4 and σ5, she will not be able to know whether player 2 has chosen D or E. That is, before
playing the game, she knows that she will have imperfect information at that moment. Also,
player 2 knows this, and knows that player 1 knows this, and knows that player 1 knows that
player 2 knows this, and so on ad infinitum.

7. For each player i∈N \{0}, a preference relation�i over the set of lotteries ∆(Σ̂) on terminal
histories. In this example, the pairs (a,b), . . . ,(p,q) specify the utility levels, or payoffs, that
the players obtain, where the i-th entry of the vector indicates what player i gets. The letters
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a, . . . ,q can be understood as descriptions of the outcomes or as monetary payoffs. Due to
the fact that there is always intrinsic uncertainty in the game, players do not care only about
the outcomes described by (a,b), . . . ,(p,q) but also about the set of lotteries or probability
distributions over such outcomes. In this example, the letters {a,c,e,g, i,k,m, p} indicate the
payoffs to player 1 while {b,d, f ,h, j, l,n,q} indicate payoffs to player 2.

Definition 3.1: Extensive Form Game

An extensive form game is a list Γ ≡
〈
N,A,Σ ,P,µ,H ,(�i)i∈N

〉
that includes the seven

above presented elements.

The requirements (a)−(b) of the element 3 lead to that the set of histories Σ has the structure of
a tree with a unique root at the initial history σ0. Since σ0 = /0 belongs to Σ , we have that σ0 is
a predecessor of each history σ ∈ Σ . Furthermore, since σ0 = /0 is unique by convention, then it
is the unique predecessor of each history in the game. We can think of each history as a node and
of two immediately adjacent histories σ and (σ ,a) as two nodes connected by a directed branch

or arrow that points from σ to (σ ,a). The tree given by the set of histories Σ is then described by
the collection of nodes associated to the histories and by the directed branches that connect such
nodes. Thus, we can start from a node, trace through the tree by following arrows, and, in this way,
reach successors of the departing node.3

The conditional probabilities described in the element 5 are the probabilities with which Nature
chooses actions at each history where it plays. Such probabilities are exogenously given. As
mentioned in the description of element 1. there exist two types of uncertainty that can be present
in a strategic situation. The first type, called extrinsic uncertainty is due to moves of Nature.
Intuitively, here we deal with outcomes of chance, where there is no intentional choice by any
player. Formally, such random phenomena are captured by random variables. The conditional
probabilities µ(· |σ) give us the probabilities associated to such random variables. The second type
of uncertainty is known as intrinsic uncertainty and it is due to the fact that players are allowed to
make their decisions in a random way.4 Whereas extrinsic uncertainty is only present in situations
where chance determines some strategically-relevant moves, intrinsic uncertainty will always be
present in any game since we always want to capture the possibility of any player moving randomly
and being uncertain about the decisions made by other players.

3 Formally, a tree is a directed graph that consists of a set of nodes and a set of directed branches (or arrows) that
connects the nodes. In addition, each node must have a single immediate predecessor and there must be a unique node
that precedes all nodes. All these requirements are ensured by the requirements in (a)-(b) of the element 3.

4 We will discuss this in detail when we introduce the notion of mixed strategy.
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The elements of the partitions Hi described in element 6 are known as information sets. They
consist of groups of histories that the player called to move cannot distinguish because she has im-
perfect information. In these cases, the player lacks full information about chance moves or about
other players’ choices. This will be particularly the case when players move simultaneously or
when players simply do not have perfect information about what others have chosen previously. To
summarize, a game will always include intrinsic uncertainty as we allow players to move randomly
and to be uncertain about other players’ moves as well.5 Extrinsic uncertainty will be present if
there are outcomes of chance—or chance moves. A player will have imperfect information if she
does not have full information about previous moves when she is called to play. Formally, this will
be captured by non-trivial information sets, where the player cannot distinguish between different
histories.

The condition that A(σ) = A(σ ′) for each σ ,σ ′ ∈ hi, for each hi ∈Hi, gives us the “infor-
mational consistency” requirement that the player is not able to deduce that σ 6= σ ′ by observing
A(σ) 6= A(σ ′). In other words, if this requirement were not satisfied, then we would have a situa-
tion where the player does not know where the previous moves have put her but, at the same time,
she “learns” to distinguish where she is by observing different sets of actions available upon each
history. Given this consistency condition, for an information set h ∈Hi, we can therefore simply
write A(h) ≡ {a ∈ A : (σ ,a) ∈ Σ for each σ ∈ h} to denote the set of actions available upon any
of the histories contained in the information set h. Regarding preferences, as stated in element 7,
the theory considers that players care only about the final history reached, regardless of the way
in which such such a history is reached. This “consequentialist” assumption is very common in
decision theory under uncertainty.

Example 3.2. The extensive form game depicted in Figure 3.2 describes a situation where an
incumbent firm in a market (player 1) interacts with a challenging firm (player 2) that considers
whether or not to enter incumbent firm’s market and compete with it. First, the incumbent must
choose whether to follow a high cost policy on advertising (H), a medium cost policy (M), or
a low cost policy (L). If the advertising policy chosen by the incumbent is aggressive, then the
game ends and the final payoffs are described by (v1

1,v
1
2). In this case, the challenger is not given

any option of choosing. However, if the advertising policy chosen by the incumbent is not high,
then the challenger can choose whether to enter (e) the market or not enter (n). The challenger
cannot distinguish whether the incumbent has chosen a medium or a low cost policy. After the
challenger’s action, the incumbent must decide whether it chooses a sales price-bargain policy (x),

5 This can be due to that the player is not able to observe previous moves, or to that the players move simultaneously,
or to that the player must decide before other players are due to make their own choices.
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to compete in the market with any other firm, or not, y. Importantly, in this case the incumbent
does not know whether the challenger has entered the market or not. This might be due to the
fact that it is not able to observe the presence of the other firm or—perhaps more realistically—to
that the incumbent chooses its policy on sales prices at the same time when the challenger decides
whether to enter or not the incumbent’s market. Yet, notice that the incumbent does “recall” its
previous decision on advertising.

H

x y

e

x y

n

M

x y

e

x y

n

L

1 [σ0]

2 [h2]
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1
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(v2
1,v

2
2) (v3

1,v
3
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1,v
5
2) (v6

1,v
6
2) (v7

1,v
7
2) (v8

1,v
8
2) (v9

1,v
9
2)

Figure 3.2 – A Market Entry Game

Example 3.3. Figure 3.3 represents a classical signaling game. Signaling games are of broad in-
terest for economists and social scientists. The canonical signaling game was proposed by Spence
(1973) and, since then, it is been applied to explore a plethora of situations where individuals
strategically communicate their private information. The situation described here is one where
an individual (the Sender) can be selected by chance as being either of high ability (H) or of low
ability (L). Using the frequentist interpretation of probability, we can consider that 40% of the
population are high-ability individuals. We observe that the Sender knows her own ability. Her
ability is then seen as a characteristic of the Sender. When a characteristic due to a move of chance
is known privately by some player, we say that such a characteristic is her private information

and often refer to it as one possible realization of the player’s type. Formally, a player’s private

information or type is a description of the information that the player has about the game and
that it is not common knowledge among all the players. In extensive form games, the players’
types are described by the information sets where they are called upon to move. After learning her
characteristic, the Sender chooses whether to invest in—verifiable —education (E) or not (NE).
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Then, a hiring institution (the Receiver) must choose whether to offer a managerial position (m)
or a clerical position (c) to the Sender. The Receiver does not have more information about the
Sender beyond her education level. Therefore, the Receiver can distinguish whether the Sender has
chosen E or NE, but cannot distinguish between the Sender’s types. The vectors (x,y) attached to
the terminal nodes indicate the monetary payoffs to the Sender and to the Receiver, respectively.
Interestingly, such payoffs reflect situations where it is relatively more costly for the low ability
Sender to invest in education, compared to the cost that the high ability Sender must incur. Such
an intuitive feature in the payoff structure makes informative signaling possible at equilibrium for
this class of games.

0

H (0.4)

L(0.6)

S
NE E

S
NE E

R

(4,4)

c

(10,10) m

R

(0,4)

c

(6,10)m

R

(−3,4)

c

(3,0)m

R

(4,4)

c

(10,0) m

Figure 3.3 – A Signaling Game

3.2. Pure Strategies

A key concept in game theory is that of strategy. Players make their decisions throughout the
play of the game by following a complete contingent plan which they elaborate before interacting

among them. Since the entire description of the game is commonly known among the players, they
can elaborate a plan that tells them how to subsequently act once they reach the histories—or, more
generally, the information sets—where they are due to play.

Let me set some notation at this point that we will use throughout. Given any profile z =

(z1, . . . ,zn) for all players involved in a game, the notation z = (z1, . . . ,zn) = (zi,z−i) is typical in
game theory. Here, z−i indicates the profile obtained by excluding player i from the overall profile
z, that is, z−i ≡ (z1, . . . ,zi−1,zi+1, . . . ,zn).
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Definition 3.2: Pure Strategy

A pure strategy in an extensive form game Γ for a player i is a function si : Hi→ Ai, with
the requirement that si(h)∈ A(h) for each h∈Hi. A pure strategy si specifies an action si(h)

for each information set h at which player i is called to play.

A pure-strategy profile is a list s ≡ (si,s−i) = (s1, . . . ,sn) of possible pure strategies for all the
players. We will use Si to denote the set of all pure strategies of player i and S ≡ S1×·· ·× Sn to
denote the set of all pure-strategy profiles.

Example 3.4. We can illustrate the set of pure strategies available to the players using the entry
market game depicted in Figure 3.2. Player 1 chooses at the information sets {σ0}, h1, and h′1.
Using a vector that specifies a (pure) strategy for player 1 as s1 = (s1({σ0}),s1(h1),s1(h′1)), we
have 12 different strategies, S1 = {s1

1, . . . ,s
12
1 }, specified as

s1
1 = (H,x,x), s2

1 = (H,x,y), s3
1 = (H,y,x), s4

1 = (H,y,y),

s5
1 = (M,x,x), s6

1 = (M,x,y), s7
1 = (M,y,x), s8

1 = (M,y,y),

s9
1 = (L,x,x), s10

1 = (L,x,y), s11
1 = (L,y,x), s12

1 = (L,y,y).

As to player 2, we can consider that the single entry s2(h2) gives us the two different strategies,
S2 = {s1

2,s
2
2}, available to her as

s1
2(h2) = e, s2

2(h2) = n.

It is very important to make clear one particular aspect of the notion of strategy. Suppose for
instance that you are playing a game all by yourself where you must decide between the existing
railway routes in order to plan a train trip within Europe that begins in Paris. Then, the notion of
strategy requires that, starting from Paris, you must choose between the available routes from each
train station in Europe. Importantly, a strategy must specify a possible (direct) destination from
each departing station in Europe even though your previously chosen route does in fact not allow
you to reach such a departing station in the first place. In other words, even though the choices
contained in a particular strategy do not let you reach Prague, such a strategy must specify a posible
destination from Prague! This is the sense in which a strategy must be a complete contingent plan.
Notice that planning for contingencies that would never arise if the player follows the strategy it is
always theoretically feasible for the player—so long as one does not consider costs from designing
strategies—and it does not affect the generality of the definition of strategy. More importantly,
such choices at “never-reached” histories turn out crucial to study dynamic games. In particular,
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the equilibrium notions typically used to study the players’ behavior rely crucially on such choices.

Given an extensive form game representation, each (pure) strategy profile s leads to a terminal
history which, in turn, gives each player a utility level or payoff. Let us use ui(s) to indicate
the utility level or payoff that player i receives in the terminal history achieved by means of the
strategy profile s. Given the presence of intrinsic uncertainty in each game, strategy profiles s will
be realized according to certain probabilities. Then, let π ≡ (π(s))s∈S ∈ ∆(S) be a probability
distribution, or lottery, over the set S of strategy profiles. Here, π(s) indicates the probability that
the strategy profile s is selected by the players.

Under some axioms usually assumed by the strand of theory that explores individual rational
choice under under uncertainty,6 a preference relation �i over lotteries π can be represented by a
utility function that has the expected utility form. This utility representation under uncertainty was
first proposed by von Neumann and Morgenstern (1944). Suppose that we use a (Bernoulli-type)
utility function ui to represent player i’s preferences over the set of pure-strategy profiles S. In
particular, ui represents player i’s preferences over if ui(s) ≥ ui(s′) whenever player i (weakly)
prefers profile s over s′. Then, a preference relation �i over the set of lotteries ∆(S) is represented
by a utility function Ui : ∆(S)→ R with the expected utility form if it has the form

Ui(π)≡∑
s∈S

π(s)ui(s).

Often times, the consequences associated to the terminal histories of an extensive form game are
represented by monetary payoffs. In such cases ui(s) is real number that indicates the “monetary
value” that player i assigns to the terminal history achieved by means of s.7 This common practice
was already used in the signaling game depicted in Figure 3.3.

3.3. Nash Equilibrium
Nash (1951)’s solution concept is probably the most influential solution concept in game theory.

The idea of Nash equilibrium is that if the players are figuring out which strategies they should play
(in the pursue of their individual interests) and, in addition, if they share a common understanding

6 In particular, these axioms state that any preference order under uncertainty be: (I) complete, (II) rational, (III)
continuous, and (IV) rank any two lotteries independently of any common third lottery. While Axioms (I)-(III) are the
basic assumptions required by the theory of choice under certainty to represent preferences which impose relatively
mild conditions, Axiom (IV) is the most controversial one when uncertainty is added to the analysis. Axiom (IV) is
sometimes challenged by experimental and empirical evidence.

7 This is made by tractability reasons as expressing the utility that receive the players in monetary terms is appeal-
ing. As already discussed, however, rationality does not mean that the players pursue exclusively monetary goals.
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of the logic of their optimal decisions, then they should either end up with a Nash equilibrium or
assign irrational behavior to other players. This argument relies on the assumption that the players
choose their strategies independently. Recall that the players choose their strategies before actually
interacting with others so that this a natural assumption.

Definition 3.3: Pure-Strategy NE (I)

A pure-strategy Nash equilibrium (NE) of an extensive form game Γ is a pure-strategy
profile s∗ = (s∗1, . . . ,s

∗
n) such that each player i ∈ N weakly prefers profile s∗ over any profile

(si,s∗−i) for each si ∈ Si.

As already introduced, game theory commonly uses (Bernoulli-type) utility functions ui : S→R
to describe how each player i evaluates the consequences induced by the strategy combinations
chosen in the play of the game. We have also already mentioned that the number ui(s) can be
interpreted in monetary terms or as a much broader indicator of happiness. Then, using a typical
utility representation under certainty, we can rewrite the notion of (pure- strategy) NE as follows.

Definition 3.4: Pure-Strategy NE (II)

A profile s∗ is a pure-strategy NE if for each player i ∈ N, ui(s∗)≥ ui(si,s∗−i) for each si ∈ Si

or, equivalently, if s∗i ∈ argmaxsi∈Si ui(si,s∗−i).

Let me elaborate a bit on the rationale behind the NE notion. In order to choose their most
preferred strategies, players need to form beliefs about the strategies that the other players select.
Consider then an external (sometimes fictional) instrumental institution, or mediator, that fully
informs each player about the choices made by the other players. Then, the NE notion requires
that each player chooses the course of action that maximizes her utility given that she believes the
information provided by the institution. Why would the players trust on the information provided
by this mediator? The trick works because recall that all players commonly know that other players
are rational, the description of the game, and the logic underlying the NE concept. Then, all players
can put themselves in the shoes of the other players and compute how such players will behave
given their own optimal choices. The NE concept then requires that the computations of how other
players behave coincide with the beliefs provided by the external mediator. The players have every
reason to believe the information provided by the external institution when they consider that the
other players are also trusting such information and thus behaving accordingly to maximize their
own expected utilities. If this story is commonly known among the players, then the requirement
in the definition of the NE gives us a reasonable and appealing description of how rational players
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will make their choices.8 In this sense, a NE strategy profile becomes a self-fulfilling prophecy:
if all the players believe that the others are choosing their equilibrium strategies, then each player
wishes to choose an equilibrium strategies so that the players’ beliefs are in fact correct.

Example 3.5. Let us compute the NEs of the extensive form game depicted in Figure 3.4. Player
1’s (pure) strategies can be summarized as A and B, and Player 2’s (pure) strategies can be de-
scribed by CF , CG, DF , DG, EF , and EG. By combining the sets of pure strategies of both players,

1

A B

2

(1,2)

C

(1,−1)

D

(0,2)

E

2

(2,2)

F

(1,3)

G

Figure 3.4 – Computing NE—Example 3.5

we can write the matrix of payoffs in Figure 3.5. This matrix is very useful to compute how each
player determines her most preferred choices, given the choice of the other player. Suppose that
player 1 picks strategy A. Then, the most preferred strategies for player 2 are {CF,CG,EF,EG},
which give her a payoff of 2. Now, if player 2 chooses strategies EF or EG, then player 1’s most
preferred choice is B rather than A. Given that player 2 picks EF , by choosing B instead of A,
player 1 moves from obtaining a payoff of 0 to getting 2. On the other hand, provided that player
2 picks EG, by moving from A to B player 1 obtains a payoff of 1 rather than 0. Therefore, such
strategy combinations are not NEs. On the other hand, given that player 2 picks CF , player 1
would benefit by choosing B rather than A, which implies that (A,CF) is not a NE either. On the
other hand, for the strategy profile (A,CG), we observe that each of the two players is choosing
a payoff maximizing strategy, given the strategy chosen by the other player. Thus, (A,CG) is a
NE. When we obtain (strictly) higher payoffs by choosing a strategy different from a selected one,

8 Sometimes, the external institution or mediator is not fictional at all. Consider the case of a traffic light at a
crossroad where we cannot see the cars passing by the intersecting road. When the light says red, the signal is
informing us that the drivers in the intersection are passing. Our optimal strategy, if we believe such information, is
then to stop and wait. We can put ourselves in the position of the drivers in the intersecting road and consider that they
will anticipate that our most preferred choice is to stop and wait. Thus, they will believe on the information provided
by the green light they are observing. Also, we will believe that their most preferred choice is to pass, which coincides
with the information provided to them by the signal. Waiting when the signal says red and passing when it says green
is a NE instrumented by the traffic light as an external mediator.
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we will informally say that we have “(strict) incentives to deviate.” Clearly, no player can have
(strict) incentives to deviate in a NE strategy profile. Contrary to the case of an equilibrium profile,
if a player has (strict) incentives to deviate from an strategy candidate to equilibrium, then the
suggested strategy combination is a self-denying prophecy. In practice, when computing NE, we
will check for situations where no player has (strict) incentives to deviate, given the other players’
strategies. We will rule out those situations where at least one player wishes to deviate. Analo-
gously, we observe that (B,CG), (B,DG), and

(
B,EG

)
are NE strategy profiles as well. For an

extensive form game Γ , we will use the notation NE(Γ ) to indicate its set of NEs. In this example,
we have

NE(Γ ) = {(A,CG),(B,CG),(B,DG),(B,EG)} .

1

2
CF CG DF DG EF EG

A 1,2 1,2 1,−1 1,−1 0,2 0,2
B 2,2 1,3 2,2 1,3 2,2 1,3

Figure 3.5 – Payoffs of Example 3.5

Example 3.6. We can similarly compute the set of NEs of the extensive form game displayed in
Figure 3.6. In this case, we can derive the payoff matrix represented in Figure 3.7. Here, we can

L R

a

L R

b

L R

c

L R

d

2

1

(−1,1)(1,−1) (−1,2)(−1,1) (1,−1)(1,−1) (1,−1)(−1,1)

Figure 3.6 – Computing NE—Example 3.6

look for the strategies that yield each player maximum payoffs, taken as given the strategy chosen
by the other player, so as to obtain

NE(Γ ) = {(L,b),(R,b)} .

Example 3.7. Consider now the extensive form game depicted in Figure 3.8. For this game, we
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1

2
a b c d

L −1,1 −1,2 1,−1 1,−1
R 1,−1 −1,1 1,−1 −1,1

Figure 3.7 – Payoffs of Example 3.6
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Figure 3.8 – Computing NE—Example 3.7

can derive the payoff matrix represented in Figure 3.9. Here we can compute the set of NEs as

NE(Γ ) ={(AGIK,CE),(AGIK,CF)),(AGIL,CE),(AGIL,CF)),

(AGJK,CE),(AGJK,CF)),(AGJL,CE),(AGJL,CF))}.

Notice that this set of NEs can be described “in essence” as player 1 moves first A and then G,
while player 2 moves C. Other possible moves are in fact captured by the complete description
of the set NE(Γ ) above. However, we observe that some of the moves taken into account in the
description are irrelevant with respect to the outcomes achieved in equilibrium.

When accounting for combinations of the players’ pure strategies sometimes one derives lengthy
payoff matrices, such as the one obtained in Figure 3.9. This motivates the question of whether
we can somehow “simplify” such payoff matrices by considering as one several pure strategies
of a given player. More precisely, consider a given player and suppose that the combination of
several of her strategies with the other players’ strategies yield exactly the same payoffs to each
player. Then, such strategies of the given player are said to be strategically equivalent. Notice that
merging strategically equivalent strategies into a single strategy does not affect neither the strate-
gic interactions among the players nor the plausible outcomes that the game makes available to the
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1

2
CE CF DE DF

AGIK 6,3 6,3 1,2 1,2
AGIL 6,3 6,3 1,2 1,2

AGJK 6,3 6,3 1,2 1,2
AGJL 6,3 6,3 1,2 1,2
AHIK 1,4 1,4 3,2 3,2
AHIL 1,4 1,4 3,2 3,2

AHJK 1,4 1,4 3,2 3,2
AHJL 1,4 1,4 3,2 3,2
BGIK 2,3 2,−3 2,3 2,−3
BGIL 2,3 3,−2 2,3 3,−2

BGJK 1,4 2,−3 1,4 2,−3
BGJL 1,4 3,−2 1,4 3,−2
BHIK 2,3 2,−3 2,3 2,−3
BHIL 2,3 3,−2 2,3 3,−2

BHJK 1,4 2,−3 1,4 2,−3
BHJL 1,4 3,−2 1,4 3,−2

Figure 3.9 – Payoffs of Example 3.7

players. In this way, we can “simplify” the corresponding payoff matrices.

Definition 3.5: Strategic Equivalence

We say that two different strategies si,s′i ∈ Si of a given player i ∈ N are strategically equiv-

alent if for each player j ∈ N, we have u j(si,s−i) = u j(s′i,s−i) for each s−i ∈ S−i.

Example 3.8. We can apply the logic of strategically equivalent strategies to the payoffs displayed
in Figure 3.9. Notice that the four strategies AGIK,AGIL,AGJK,AGJL of player 1 give exactly
the same payoffs to each player 1 and 2 when combined with all the strategies available to player
2. These strategies could therefore be merged into a single one. In fact, the common actions to
all these four strategies, which are also the relevant ones to determine the payoffs achieved by the
players (when combined with player 2’s strategies), are actions A and G. We can apply the idea be-
hind strategically equivalent strategies to simplify the set of strategies AHIK,AHIL,AHJK,AHJL,
where actions A and H are the relevant ones. In addition, following the same reasoning, we can
merge the following pairs of strategies as well: BGIK and BHIK into BIK; BGIL and BHIL into
BIL; BGJK and BHJK into BJK; BGJL and BHJL into BJL.

The payoff matrix in Figure 3.9 could be simplified to the matrix displayed in Figure 3.10. We
commonly use the term semi-reduced payoff matrix to refer to the matrix the results from merging
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all strategically equivalent strategies of the original payoff matrix.

1

2
CE CF DE DF

AG 6,3 6,3 1,2 1,2
AH 1,4 1,4 3,2 3,2

BIK 2,3 2,−3 2,3 2,−3
BIL 2,3 3,−2 2,3 3,−2

BJK 1,4 2,−3 1,4 2,−3
BJL 1,4 3,−2 1,4 3,−2

Figure 3.10 – (Semi-Reduced) Payoff Matrix of Example 3.7

Example 3.9. Figure 3.11 depicts the extensive form game that corresponds to the classical pris-

oner’s dilemma situation. The prisoner’s dilemma gives us a general framework which illustrates
that NE outcomes do not need to coincide with socially desirable outcomes. The situation can be
described by considering two players that have committed two crimes, one minor crime for which
their guilt can be proved without any confession, and one major crime where conviction needs that
at least one of the players confesses. The prosecutor establishes that if only one player confesses
(D for “Default”), then she will go free (which gives her a payoff of 6) while the accused player
will incur a long sentence (which gives her a payoff of 0). If none of the players confesses (C
for “Cooperate”), then both will incur a short sentence for the minor offense (which gives each a
payoff of 5). If both players confess, then they will be sentenced with a medium term period in jail
that amounts to the long sentence for being found guilty of the major offense minus a reduction
for confessing. This gives each a payoff of 1. The situation displayed in Figure 3.10 considers that
player 1 decides first between confessing or not and then, without knowing the decision of player
1, player 2 makes the analogous choice.

For this game, we can derive the payoff matrix represented in Figure 3.12. We observe that
the only NE is (D,D) which yields a payoff of 1 to each player. This is not a socially desirable
outcome. In particular, an outcome is said to be (weakly) Pareto efficient if there is no other
outcome that would make all players better off. In this example, the unique NE strategy profile
entails an outcome that gives the players and outcome of 1 and yet there is another outcome that
makes all of them (strictly) better off. For this outcome to be achieved both players have to not
confess. This a situation socially more desirable than the situation that the NE concept predicts.
This example illustrates the tension often present in economics between actual outcomes predicted
by the theory (positive implications) and socially desirable outcomes according to certain (very
weak) philosophical criteria (normative implications). This tension is precisely what makes the
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Figure 3.11 – A Prisoner’s Dilemma

message conveyed by the prisoner’s dilemma situation very interesting.

1

2
D C

D 1,1 6,0
C 0,6 5,5

Figure 3.12 – Payoffs of Prisoner’s Dilemma Game

Example 3.10. The strategic situation described by a prisoner’s dilemma can be “rephrased” in
terms more familiar to economists using typical motivations within the field of industrial organiza-

tion (IO). Consider a duopolistic market for a certain good where two firms compete by choosing
the quantities they produce and offer. Suppose that the market is in equilibrium in the traditional
sense that supply equals demand. Firms choose quantities and the available demand for the good
determines the final price of the good. The firms’ profits depend on the quantities that they produce
(and sell) and on the final price of the good. Let qi ≥ 0 be the quantity of the good produced by
firm i ∈ {1,2}. Let P = max{a−b(q1 +q2),0} be the (inverse) demand function for the good in
this market, with a,b > 0. Let cqi be the cost to each firm i from producing the quantity qi, where
0 < c < a. In this environment, the profits to firm i are given by the expression

Πi(qi,q j) =
[
a−b(qi +q j)

]
qi− cqi,

where we use j to denote the player other than i, that is { j} ≡ {1,2} \ {i}. Suppose that firm i

believes that firm j will choose quantity q∗j . Then, firm i’s goal according to the NE requirements
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is to choose a quantity q∗i ≥ 0 that solves the problem

max
qi≥0

[
(a− c)−b(qi +q∗j)

]
qi.

Assuming the nontrivial case q∗i > 0, this problem is solved by considering the first-order condition

∂Πi(q∗i ,q j)/∂qi = 0, which gives us the linear expression9

q∗i =
a− c
2b
− 1

2
q j. (3.1)

The expression of the so called reaction function q∗i = RFi(q j) in Equation 3.1 is valid for both
firms i = 1,2 so that we obtained a linear system with two equations and two unknowns. Solving
the system, we obtain a unique solution q∗ = (q∗1,q

∗
2) where

q∗1 = q∗2 =
a− c
3b

,

which, in turn, yields the optimal profits

Πi(q∗) =
(a− c)2

9b
for both firms i = 1,2.

This solution gives us the unique NE of this game and the payoffs above describe the corresponding
NE outcome. Figure 3.13 displays the two reaction functions of the competing firms. Here we can
observe how quantities different from the NE choices would adjust as the firms use their reaction
functions to pick their optimal quantities conditioned on the quantities chosen by their rivals.

Now, consider that instead of competing between them, the firms decide to collude in order
to choose jointly the quantities that maximize the sum of their profits. This can be viewed as a
situation where both firms merge into a single one. The profits of the merger would therefore be

Π̃(q)≡Π1(q)+Π2(q) =
[
(a− c)−b(q1 +q2)

]
(q1 +q2).

Suppose that the collusion agreement considers that both firms must offer the same quantities.

9 The model proposed here of duopolistic competition in quantities, as well as the solution obtained, was first
proposed in 1838 by the french economist Augustin Cournot (Cournot (1929)). Cournot termed the linear expression
in Equation 3.1 as reaction function. This equation tells us what quantity would a firm optimally choose conditioned
on the quantity taken by its rival. By solving this model, Cournot indeed derived in fact a NE. Cournot did not propose
a solution concept for games in general. Yet, the NE concept is also sometimes known as Cournot-Nash Equilibrium to
acknowledge Cournot’s seminal contribution to the ideas underlying the NE notion, which was not formally developed
until more than a century later.
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Figure 3.13 – Reaction Functions for Cournot Duopoly

Then, the problem of the merge of firms would be to choose quantities q̃1, q̃2≥ 0, with q̃1 = q̃2, that
maximize the profit function derived above. Algebraically, we would use the first-order conditions

∂Π̃(q̃)/∂q1 = 0, ∂Π̃(q̃)/∂q2 = 0, and q̃1 = q̃2, to obtain

q̃1 = q̃2 =
a− c
4b

.

Now, these quantities yield the following profits

Πi(q̃) =
(a− c)2

8b
for both firms i = 1,2.

Thus, while the chosen quantities are larger in the NE outcome than in the collusive agreement, the
profits from the NE to each of the firms are smaller than the ones under collusion. Now suppose
that firm j chooses indeed the collusive quantity instead of following the NE recommendation,
that is, q̃ j = (a− c)/4b. Then, the expression obtained in Equation 3.1, tell us that firm i would
optimally choose the quantity q̄i = 3(a−c)/8b. This would give profits Πi(q̄i, q̃ j) = 9(a−c)2/64b

to firm i. We have that Πi(q̄i, q̃ j) > Πi(q̃). On the other hand, the profits to firm j would be
Π j(q̄i, q̃ j) = 6(a− c)2/64b, so that Π j(q̄i, q̃ j) < Π j(q∗). The analogous symmetric implications
would follow if only firm i complies with the collusive agreement. Then, if we restrict attention to
letting each of the firms to decide (simultaneously) only between offering the NE quantity or the
collusive quantity, then we obtain a payoff matrix that corresponds exactly to a prisoner’s dilemma
situation. Suppose without loss of generality that (a− c) = 1. Then, such payoffs are displayed in
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Figure 3.14.
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Figure 3.14 – To Collude or Not to Collude in Cournot Duopoly

We observe that following the collusive agreement (C,C) yields higher payoffs to each of the
firms. However, if the firms decide simultaneously and no additional considerations (such as penal-
ties from not respecting the collusive agreement) are incorporated in the firms’ final payoffs, then
the firms would follow the NE recommendation which gives them lower profits.

3.4. Subgame Perfect Equilibrium

For some games where the players take decisions sequentially, their dynamic structures allow
us to consider some NEs as “more reasonable or appealing” than others.10 Intuitively, there are
situations where players choose their optimal actions given the optimal actions of the others, as
the NE notion requires. However, in some cases, such situations would not have been achieved
in the first place if the players have followed the NE recommendations at earlier stages of the
game. The additional criterion that we consider now is known as sequential rationality. Sequential
rationality requires that each player chooses her most desirable action conditional on being at each
information set where she has to play. If this criterion is common knowledge, then each player
will “look ahead” at each point in time to determine how all the players will behave optimally in
the future. After incorporating such information, the player will determine her preferred option in
the present. In this way, the players start by positioning themselves in the final stages of the game
and then determine the optimal choices of everyone at each preceding stage by incorporating the
information of how they behave after each stage. The players reason therefore in a “backwards”
fashion. We refer as backwards induction to the process of analyzing an extensive form game
from back to front. By doing so, we can determine how each player will choose her most desired
actions at each information set where she is due to play, so that the sequential rationality condition
is always satisfied.

10 The process where we begin with several NEs and impose additional criteria to determine which of those NEs
make more sense than others is knows as equilibrium refinement or equilibrium selection.
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Example 3.11. Consider the extensive form game depicted in Figure 3.15, which is commonly
known as a centipede game. In a centipede game, each player is given, in alternating turns, the
choice of stoping the game (S) or continuing it (C). The payoffs to both players increase as the
game continues.

S S S S S S

CCCCCC1 1 12 2 2

1,0 0,2 3,1 2,4 5,3 4,6

6,5

Figure 3.15 – A Six Turn Centipede Game

In this game, each of the two players has eight possible (pure) strategies and the corresponding
payoff matrix (after simplification of strategically equivalent strategies) is shown in Figure 3.16.

1

2
S CS CCS CCC

S 1,0 1,0 1,0 1,0
CS 0,2 3,1 3,1 3,1

CCS 0,2 2,4 5,3 5,3
CCC 0,2 2,4 4,6 6,5

Figure 3.16 – (Semi-Reduced) Payoff Matrix of Centipede Game

The unique NE of this game is (S,S) and its payoffs appear in the highlighted cell. Backwards
induction can be applied here as follows. Player 2 will choose S over C at the last information set
where she is due to pay so as to collect a payoff of 6 instead of 5. Both players would commonly
agree on that and discount it. Given this, player 1 would have previously chosen S rather than C so
as to get a payoff of 5 instead of 4. Again, this would be commonly agreed upon and discounted
by both players. As a consequence, player 2 would have previously chosen S rather than C so as to
get a payoff of 4 instead of 3. Then, player 1 would have previously chosen S rather than C so as to
get a payoff of 3 instead of 2. Given this, player 2 would have previously chosen S rather than C so
as to get a payoff of 2 instead of 1. This takes us to the root of the tree where, given the correctly

anticipated future sequence of optimal choices, player 1 wishes S rather than C so as to get a payoff
of 1 instead of 0. In short, the only NE outcome compatible with the sequential rationality criterion
here entails that player 1 moves S right at the beginning of the game, leading the play to an end
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from the very beginning. The NE strategies that satisfy the sequential rationality requirement are
highlighted in red in Figure 3.14. We observe that the only NE of this game satisfies the sequential
rationality criterion. Makes sense, right?

Example 3.12. In some instances, sequential rationality (and the corresponding backwards induc-
tion reasoning process) does suggest us to draw attention away from some NEs because they are
less plausible than others. Consider again the game depicted in Figure 3.4. Let us place ourselves
on the last moves of the game and analyze how the players would optimally choose. In particular,
upon history (σ0,A), player 2 will choose either action C or E, which give her a payoff of 2. Both
players commonly agree on this. On the other hand, upon history (σ0,B), player 2 would choose
G, which gives her a playoff of 3. Again, both players commonly agree on this. Then, upon history
σ0 player 1 would choose either action A or B because she knows that both players commonly
agree on that, by doing so, player 1 would get a payoff of 1. Therefore, following the sequential
rationality logic, we obtain the set of equilibria:

{(
A,CG

)
,
(
B,CG

)
,
(
B,EG

)}
.

In this case, using the sequential rationality logic, we would rule out the previously obtained NE
(B,DG) as less plausible than others.

Example 3.13. Consider the extensive form game depicted in Figure 3.17. The semi-reduced
payoff matrix for this game is a shown in Figure 3.18. We observe that both (UA,X) and (D,Y )

are NEs for this game. However, it is not the case that both are subgame perfect. In particular,
for the subgame that initiates at history (σ0,U), the strategy combination (UA,X) induces the NE
(A,X) in the subgame. In addition, (UA,X) is a NE for the entire game. Therefore, it constitutes
the only NE that is also subgame perfect. Here we can rule out the NE combination (D,Y ) as less
plausible than (UA,X).

Sequential rationality can be applied in general to extensive form games. Selten (1965, 1975)
developed a notion of equilibrium, known as subgame perfect equilibrium, that adds the sequential
rationality requirement to the NE conditions. The concept of subgame perfection requires first to
consider the description of what it is a subgame of an extensive form game.
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Figure 3.17 – Subgame Perfection Does Refine NEs

1

2
X Y

UA 3,4 1,4
UB 2,1 2,0

D 2,6 2,6

Figure 3.18 – (Semi-Reduced) Payoff Matrix

Definition 3.6: Subgame

Given an extensive form game Γ , a history σ ∈ Σ in the tree representation of the game is
said to be the root of a (proper) subgame if neither σ nor any of its successors are in an
information set that contains histories that are not successors of σ . A (proper) subgame is
the tree structure specified by σ and its successors.

To practice with identifying (proper) subgames, consider again the extensive form game de-
picted in Figure 3.1 and let us find the subgames available in this game. First, notice that the root
of any extensive form game always initiates a subgame (which in fact coincides with the original
game). Thus, here σ0 = /0 initiates the subgame that coincides with the entire game. Secondly,
note that the history σ1 = (σ0,A) also initiates a subgame. In particular, all the successors of σ1

are in information sets that contain histories that are successors of σ1. We observe that the history
σ2 = (σ0,A,D) is not the root of a subgame. Specifically, σ2 belongs itself to an information set
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that contains another history σ3 = (σ0,A,E) which is not a successor of σ2. Analogously, σ3 does
not initiate a subgame either. Finally, we can verify that σ4 = (σ0,B) is the root of a subgame since
all its three successors are in (trivial) information sets that contain histories that are also successors
of σ4. Therefore, this game has three (proper) subgames whose respective roots are σ0, σ1, and
σ4.

With the notion of (proper) subgame at hand, we can now present the concept of subgame
perfection.

Definition 3.7: Subgame Perfection

Given an extensive form game Γ , a strategy profile s∗ is a subgame perfect equilibrium

(SPE) if it specifies a NE in every (proper) subgame of the original game Γ .

Consider a finite extensive form game with perfect information. Then, we can always proceed
by backwards induction and study how each player would optimally make her choice in each root
of a proper subgame where she must play. Furthermore, we can always identify pure-strategy best
responses. Therefore, we can always obtain a SPE s∗ in pure strategies for a finite extensive form
game with perfect information. Since such a strategy profile s∗ must induce a NE in every subgame
of the original game, it follows that such a SPE is a NE of the entire game. In other words: we can
always guarantee existence of pure-strategy NE for a finite game with perfect information. This
observation was noted by Kuhn (1953).

Observation 3.1

Each finite game Γ with perfect information has at least one pure-strategy Nash equilibrium
(Kuhn, 1953).

Crucially, games where the players move simultaneously are excluded from the result above.
By construction, such games are games of imperfect information, where each players is uncertain
about the move of the other players. For example, if we begin with a strategic form representation
as a primitive game, then we cannot guarantee the existence of a Nash equilibrium in pure strategies
for such a game.

Example 3.14. Consider the extensive form game displayed in Figure 3.19. Here we have a sub-
game, highlighted in red, that corresponds to the prisoner’s dilemma game. We know that (D,D) is
the only NE that this subgame yields. In particular, player 1 optimally chooses D. This gives each
player a payoff of 1. On the other hand, as highlighted in blue, we observe that player 1 optimally
chooses D upon history (σ0,B,C) but she chooses C upon history (σ0,B,D). Given this, player
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2 would optimally choose D upon history (σ0,B) since this gives her a payoff of 6, which she
clearly prefers to the alternative achievable (under sequential rationality) payoff of 2. Given these
NE choices in each of the three subgames already identifies, it remains to determine which will be
the optimal choice of player 1 at the root of the tree. We see that player 1 would optimally choose
B so as to get a payoff of 2 rather than a payoff of 1.

1

2

(5,5)

C

(6,0)

D

C

(0,6)

C

(1,1)

D

D

A

2

1

(5,5)

C

(6,2)

D

C

1

(2,6)

C

(1,1)

D

D

B

1

Figure 3.19 – Computing Subgame Perfect Equilibrium

Example 3.15. Consider the extensive form game displayed in Figure 3.20. Here, we consider that
player 3 moves first and, after choosing between X and Y , players 1 and 2 choose simultaneously
between X and Y . Instead of showing the corresponding subtree representations, Figure 3.19
displays directly the payoff matrices associated to the two subgames that initiate upon player 3’s
choice. Notice that, in order to compute NEs using the two displayed payoff matrices, we need
to consider only the entries corresponding to players 1 and 2 because they are the only players
due to move at such subgames. First, we observe that both (X ,X) and (Y,Y ) are NEs in subgame
associated to history σ1. If asked, both players would agree on that they prefer the NE (Y,Y ).
Indeed, if the society consisted only of players 1 and 2, then (Y,Y ) Pareto would dominate (X ,X).
Secondly, for the subgame associated to history σ2, we observe that (X ,Y ) is the only induced NE.
Now, using backwards induction, player 3 would anticipate these three NEs and, therefore, her
optimal choice would be Y . The only subgame perfect equilibrium of this game is (Y,X ,Y ), which
leaves players 1 and 2 with a lower payoff than their “preferred NE” for those subgames where
they are the only players choosing.

Example 3.16. Consider again a duopolistic market for some homogenous good where two firms
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X Y

3

1

(σ1), 2
X Y

X 1,1,1 2,0,2
Y 0,2,0 2,2,3/2

1

(σ2), 2
X Y

X 3,1,3 3/2,3/2,2
Y 1,1,1 1,3,1

Figure 3.20 – Three Player Game: Combining Extensive Form with Matrix Form

compete by choosing quantities. Unlike the Cournot benchmark, consider though that firm i = 1
chooses first its quantities and, after observing such a choice, firm i = 2 chooses its own quan-
tities. This situation is known in IO as duopolistic competiting à la Stackelberg.11 We can use
the backwards induction rationale to explore SPE in this situation of perfect information. To
complete the details of the model, consider that qi ≥ 0 is the quantity of the good produced by
firm i ∈ {1,2} and that the (inverse) demand function for the good in this market is given by
P = max{a− b(q1 + q2),0}, where a,b > 0. Let cqi be the cost to each firm i from producing
the quantity qi, where 0 < c < a. In this environment, we need to start by exploring the NEs of
the one-person subgame the initiates after firm 1 have chosen its quantity q̄1. Firm 2 wants to
maximize its profits the profits to firm i are given by the expression

Π2(q̄1,q2(q̄1)) =
[
(a− c)−b(q̄1 +q2(q̄1)

]
q2(q̄1).

Assuming the nontrivial case q∗2(q̄1) > 0, this problem is solved by considering the first-order

condition ∂Π2
(
q̄1,q2(q̄1)

)
/∂q2(q̄1) = 0, which gives us the linear expression

q∗2(q̄1) =
a− c
2b
− q̄1

2
. (3.2)

The expression in (3.2) above gives us firm 2’s best response for any production level q̄1 picked
by its competitor. Proceeding by backwards induction, firm 1 discounts such an optimal behavior

11 This model is commonly termed in this way after German economist Heinrich Freiherr von Stackelberg.
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and, therefore, plugs the expression given by (3.2) into its own profit function. We thus obtain

Π1
(
q̄1,q∗2(q̄1)

)
=
[
(a− c)−b

(
q̄1 +q∗2(q̄1)

)]
q̄1

=

[
(a− c)

2
− b

2
q̄1

]
q̄1.

Now, for the subgame that initiates at the root of the original game, firm 1 wants to choose opti-
mally q̄1 so as to maximize its profits derived above. Again, considering only the nontrivial case
q∗1 > 0, this problem is solved by considering the first-order condition ∂Π1

(
q̄1,q∗2(q̄1)

)
/∂ q̄1 = 0,

which gives us
q∗1 =

a− c
2b

.

Now, substitution of the value q̄1 = q∗1 obtained above into the expression (3.2) for firm 2’s optimal
choice yields

q∗2 =
a− c
4b

.

We observe that firm 1 offers a higher quantity than firm 2 in this SPE. As to the optimal profits of
both firms in this situation, we can derive

Π1(q∗) =
(a− c)2

8b
and Π2(q∗) =

(a− c)2

16b
.

Clearly, relative to the model where both firms choose their quantities simultaneously, firm 2 is
harmed while firm 1 is benefited. The result that the profits of firm 1 are higher than the ones of
firm 2 in this situation is known as the first mover advantage for the case of Stackelberg competition
with a uniform good.

3.5. Behavior Strategies
To be able to fully analyze strategic settings in general, we need to account for the possibility

that players choose randomly between their available options. Situations where the players assign
probabilities to their actions arise naturally when such a random choice is interpreted as if the
player “hesitates between her actions.” If asked about her random choice in such instances, the
player might then answer “with this given probability I would take such a particular action.” An-
other way of viewing a random choice, based on the frequentist interpretation of a probability, is
that of considering that the player faces a (relatively large) number of times exactly the same deci-
sion (under the same circumstances). Then, she would choose in each instance an action (without
any hesitation in this case). The player, however, would be able to choose different actions across
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the identical situations, in accordance to the corresponding probabilities. For some environments,
we indeed wish to use probabilities to describe best how the players interact.12 One way to de-
scribe formally how the players choose randomly in situations represented as extensive form games
is that given by the idea of behavior strategy.

Definition 3.8: Behavior Strategy

Given an extensive form game Γ , a behavior strategy for player i 6= 0 is a collection of
probability distributions
ρi = {ρi(· |h) ∈ ∆ (A(h)) : h ∈Hi such that P(σ) = i for each σ ∈ h}.

Here, ρi(a |h) is the probability that, upon being called to play at each history σ in the infor-
mation set h, player i chooses her immediately available action a. Thus, a behavior strategy ρi has
conceptually the same meaning as the prior notion µ which is part of the description of an exten-
sive form game. The only difference is that priors are exogenously given (as a choice by chance)
whereas behavior strategies are endogenously chosen by players that pursue their goals. We will
use ρ ≡ (ρi,ρ−i) = (ρ1, . . . ,ρn) to denote a behavior profile.

12 Other than the need of allowing for random decisions to capture more suitably outcomes in certain environments,
allowing for random decisions is a crucial technical requirement for the set of tools of game theory to be useful in
predicting/explaining behavior in strategic settings. Specifically, the NE solution can be proved to always exist only if
we allow for random choices.
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4. Strategic Form Games

4.1. Strategic Form Representations

In some strategic situations, players make their choices once and for all and, furthermore, they
pick their actions simultaneously. Such situations are best described by strategic, or normal form
games. By definition, strategic form games are not explicit about any sequences of moves and con-
sider that each player has not information whatsoever about the choices of others when making her
own choices. Some environments adjust naturally to these features. Alternatively, game theorists
sometimes find useful to “translate” a dynamic interaction, originally described by an extensive
form game, into a game where all players move simultaneously. In this way, the analyst inten-
tionally abstracts from the actual sequences of moves, as well as from the specific description of
what each player knows at each point, during the play. Thus, by expressing an original extensive
form game into its corresponding strategic form, we ignore pieces of information provided by the
extensive form description. One advantage of working with the strategic form representation of a
game is that it facilitates the computation of NEs. Then, we can always go back to the original
extensive form game for further considerations as to how the players would optimally behave, or
for selecting the most plausible equilibria from the obtained set of NEs.

Definition 4.1: Normal Form

A normal form, or strategic form, game Γ consists of Γ =< N,S,u >, where:
(1) N = {1, . . . ,n} is a finite set of players;
(2) S =×i∈NSi is a set of profiles s = (s1, . . . ,sn) of (pure) strategies for the players;
(3) u≡ (ui)i∈N is a list of utility functions. In particular, each ui : S→R is a utility function
for player i such that ui(s) is the payoff that receives player i when the players choose the
strategy profile s.



4.2. Mixed Strategies

The key idea that players may randomize between their available choices can be modeled also
when one consider games in strategic form.

Definition 4.2: Mixed Strategy

A mixed strategy for player i is a probability distribution βi ∈ ∆(Si) over the set of pure
strategies Si available to player i so that βi(si) indicates the probability that player i chooses
(pure) strategy si.

Let β ≡ (βi,β−i) = (β1, . . . ,βn) be a mixed strategy profile and use ∆(S)≡ ∆(S1×·· ·×Sn) =

∆(S1)× ·· · ×∆(Sn) to indicate the set of all available mixed strategy profiles. We can use the
expression of the expected utility to represent the preferences of each player i under the uncertainty
associated to the random behavior of the players as

Ui(β ) = ∑
s∈S

β (s)ui(s) = ∑
s∈S

∏
i∈N

βi(si)ui(s).

Importantly, notice that the players choose their strategies individually and, more importantly,
in a totally independent way, as required by the theory. That is, we are considering the usual
multiplicative decomposition of the definition of probability independence, β (s) = ∏i∈N βi(si).
This, nonetheless, does not preclude that the players’ optimal decisions in equilibrium are usually
correlated. Recall that we naturally consider that strategies are picked by the players before they
play the game (i.e., they are chosen at an ex-ante stage), whereas an equilibrium is a final outcome
of their interplay (i.e., it is realized at an ex-post stage).

A key question that arises here is whether we can use mixed and behavior strategies in a fully
equivalent way to represent the players’ preferences under uncertainty and, therefore, to analyze
their behavior. As it turns out, the answer to this question depends crucially on whether or not the
players “forget” information that they previously had.

Example 4.1. To illustrate when mixed and behavior strategies can be used equivalently, consider
the extensive form game depicted in Figure 4.1. The situation here described could be that of a
single investor who must make her investment decisions along two different dimensions, in two
sequential stages: first (u)p or (d)own, and then (l)eft or (r)ight. The terminal history that the
investor reaches depends on an initial move by chance that determines whether the profitability
from the investment is either (B)ad or (G)ood. The investor chooses in the first stage not knowing

40



about the investment true profitability. After this, she chooses again in the second stage. In the
second stage, she does not know about the investment profitability either but, more importantly, she
even “forgets” about her own investment choice at the first stage. Now, consider a mixed strategy β

for the investor such that β (ul) = 1/3 and β (dr) = 2/3. Such a strategy, together with the system
of priors about the initial move of Nature, determines the distribution over terminal histories πβ

with πβ (σ
1) = p/3, πβ (σ

4) = 2p/3, πβ (σ
5) = (1− p)/3, and πβ (σ

8) = 2(1− p)/3. Then,

U1(β ) =
p
3
[
v(σ1)+2v(σ4)

]
+

(1− p)
3

[
v(σ5)+2v(σ8)

]
.

For this game, however, there is no behavior strategy capable of inducing such a distribution over
terminal histories. To see this, consider any possible behavior strategy for the investor ρ , param-
eterized as ρ(u |h) = x ∈ [0,1] and ρ(l |h′) = y ∈ [0,1]. With this parameterization, any behav-
ior strategy of the investor will assign probability pxy to the terminal history σ1 and probability
p(1−x)y to the terminal history σ3. Therefore, in order to induce the distribution already achieved
by the proposed mixed strategy β , we need that pxy = 1/3 and p(1− x)y = 0 be satisfied simulta-
neously. Clearly, these are two conflicting requirements, which leads to a contradiction.

0
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1 [h]

1 [h′]

Figure 4.1 – Imperfect Recall

The key feature that underlines the message conveyed by Example 4.1 is that the player “for-
gets” a piece of information that she previously possessed, i.e., her own past move in the first
investment stage. Intuitively, the use of mixed strategies allows the players to select their contin-
gent course of action before playing the game. In this way, they can “insure” themselves against
forgetting information during the play of the game. This can no be done using behavior strategies
where the players decide their course of action during the play of the game. Therefore, forgetting
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can lead to that we cannot use in an equivalent way mixed and behavior strategies to induce distri-
butions over terminal histories. Equivalence between mixed and behavior strategies is, nonetheless,
guaranteed when no player forgets any information that she previously had during the play of the
game. We say that an extensive form game Γ features perfect recall if none of the players forgets
any information she possessed in the past, including her previous moves in the game. Then, perfect
recall allows us to obtain the following result.

Theorem 4.1: Kuhn’s Theorem

Consider an extensive form game Γ that features perfect recall. Then, for each mixed strat-
egy profile β there exists a behavior strategy profile ρ that induces the same distribution
over terminal histories. Conversely, for each mixed strategy profile β there exists a behavior
strategy profile ρ that induces the same distribution over terminal histories.

Thus, if we believe that perfect recall is a reasonable assumption, then we can exchangeably
use behavior and mixed strategies, in a totally equivalent way, to represent the players’ preferences
under uncertainty. Given this, when we focus attention to NE—wherein strategic interactions are
taken as if the players move simultaneously—, it turns out quite convenient to resort to mixed
strategies, rather than to behavior strategies.

4.3. Beliefs and Best Replies

When players are allowed to randomize between actions, they accordingly need to form prob-
abilistic beliefs about other players’ choices in order to determine their most preferred courses of
actions. Let us use ψi j(s j) to indicate players i’s beliefs about pure strategy s j being chosen by
player j 6= i, and then ψ−i(s−i) = ∏ j 6=i ψi j(s j) to indicate player i’s beliefs about the combination

s−i of pure strategies chosen by the rest of players. Thus, in consonance with the fundamental
premise that the players choose their pure strategies in an independent way, game theorists con-
sider that players form beliefs about others’ choices also in an independent manner. Given player
i’s beliefs ψ−i about the strategies picked by the rest of players, we can then compute i’s expected
utility when she chooses the mixed strategy βi as

Ui(βi,ψ−i) = ∑
s∈S

βi(si)ψ−i(s−i)ui(si,s−i).

To determine her most preferred course of action upon each string of beliefs ψ−i, player i wishes
to choose a mixed strategy βi so as to maximize Ui(βi,ψ−i). Player i’s best-reply in a game Γ is
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the mapping BRi : ∆(S−i)→ ∆(Si) specified as

BRi(ψ−i)≡
{

βi ∈ ∆(Si) : Ui(βi,ψ−i)≥Ui(β
′
i ,ψ−i) for each β

′
i ∈ ∆(Si)

}
= arg max

βi∈∆(Si)
Ui(βi,ψ−i).

(4.1)

Since players now optimally choose probability distributions βi, the sets BRi(ψ−i) will typically
include continuum subsets. In particular, this will be always the case when a player is indifferent
between two pure strategies. Thus, the mappings BRi will in general be correspondences rather
than functions.

The rationale behind the idea of best-replies continues to work exactly the same way when
one restricts attention to situations where players only pick pure strategies and, accordingly, their
beliefs assign probability one to particular pure strategies chosen by their opponents.1 Indeed,
the reaction functions introduced in the earlier application to Cournot oligopolistic competition are
examples of best-replies where the firms are restricted to choose quantities qi≥ 0 as pure strategies.

In order to analyze behavior when the players make probabilistic choices and inferences, it turns
out quite convenient to consider formally profiles of best-replies. Let us use ψ = ((ψi j) j 6=i)i∈N

to denote a belief profile of the players about the pure strategies picked by the rest of play-
ers. A best-reply profile in a game Γ is the mapping BR : ∆(S) → ∆(S) given by BR(ψ) ≡
(BR1(ψ−1), . . . ,BRn(ψ−n)).

4.4. Mixed-Strategy Nash Equilibrium

The logic behind the NE notion can be analogously applied to situations where the players
choose probabilistic rules to determine their courses of action. In particular, at an equilibrium,
each player i’s beliefs about the (probabilistic) choices of others coincide with their actual mixed
strategies, provided that no player has strict incentives to deviate from her choices. Note that
including randomized choices does not add any new considerations to the influential NE criterion
already presented when introducing NE in pure strategies. All new needed ingredients are of form
rather than of substance.

1 Formally, a best-reply in pure strategies can be defined as a mapping BRi : S−i→ Si specified by

BRi(s−i)≡
{

si ∈ Si : ui(si,s−i)≥ ui(s′i,s−i) for each s′i ∈ Si
}
.

Here, BRi(s−i) gives us the set of pure strategies that player i optimally chooses when she believes (with probability
one) that the rest of players are picking the strategy string s−i.
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Definition 4.3: Mixed-Strategy NE (I)

A mixed-strategy Nash equilibrium (NE) of a game Γ is a mixed strategy profile β ∗ =

(β ∗1 , . . . ,β
∗
n ) such that for each player i ∈ N, β ∗−i ∈ BRi(ψ

∗
−i) where ψ∗−i = β ∗−i.

As in the case of NE in pure strategies, the key consideration is that in equilibrium we impose the
consistency requirement ψ∗−i = β ∗−i, provided that each player i chooses her most preferred mixed
strategies upon her beliefs ψ∗−i. Using the concept of best-reply profile, we can then reformulate
the NE definition in the following compact form.

Definition 4.4: Mixed-Strategy NE (II)

A mixed-strategy Nash equilibrium (NE) of a game Γ is a mixed strategy profile β ∗ such
that β ∗ ∈ BR(β ∗).

In the above definition, we formally say that β ∗ is required to be a fixed point of the correspon-
dence BR.

Example 4.2. Consider the extensive form game depicted in Figure 4.2. The (semi-reduced) nor-
mal form representation of this game is given in Figure 4.3.

a A c

dBb1 12

1,1 −1,0 3,2

4,−1

Figure 4.2 – Computing Mixed-Strategy NE

We are using parameters p,m,q ∈ [0,1] (with p+m+q = 1) to account for the mixed strategies
of player 1 and parameter r ∈ [0,1] to account for the mixed strategies of player 2. Using this
simple notation, we already impose the condition that, in equilibrium, beliefs must coincide with
actual (optimal) choices. We can compute the expected payoffs of the players as:

U1(p,m,q;r) = p+(3−4r)m+(4−5r)q;

U2(r; p,m,q) = (p+2m−q)+(q−2m)r.

Since the players’ preferences are represented using expected utility forms, we naturally obtain
linear expressions in the parameters p,m,q, for player, 1 and in the parameter r, for player 2. To
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obtain the best-replies of the players, note first that (3− 4r)− (4− 5r) = r− 1. Thus, regardless

of the value of r ∈ [0,1], term (4− 5r) is always higher or equal than term (3− 4r) (in fact,
they are equal only for r = 1). As a consequence, player 1 will optimally choose m∗ = 0 for each
r ∈ [0,1]. This optimal choice will be part of the players’ best-replies. Taking this optimal behavior
into account, we can restrict attention to the following expression for the expected utilities of the
players:

U1(p,q;r) = p+(4−5r)q = 1+(3−5r)q =U1(q;r);

U2(r; p,q) = (p−q)+qr = (1−2q)+qr =U2(r;q),

since p and q must satisfy p+q = 1. Now, to compute the players’ best replies, note that, for each
given parameter r ∈ [0,1], player 1 wishes to pick parameter q ∈ [0,1] with to maximize U1(q;r).
Analogously, for each givenq ∈ [0,1], player 2 wishes to pick parameter r to maximize U2(r;q). It
follows that:

BR1(r) =


q = 0 if r ∈ (3/5,1];

q ∈ [0,1] if r = 3/5;

q = 1 if r ∈ [0,3/5)

and

BR2(q) =

r ∈ [0,1] if q = 0;

r = 1 if q > 0.

To obtain the set of mixed-strategy NEs, we now need to look for values of q∗,r∗ of the parame-
ters such that q∗ ∈ BR1(r∗) and r∗ ∈ BR2(q∗) simultaneously. By verifying both compatible and
incompatible cases, we obtain:

1. q∗ = 0 ⇒ r∗ ∈ [0,1], which is only compatible with r∗ ∈ [3/5,1].

2. q∗ ∈ (0,1) ⇒ r∗ = 1, but this is incompatible with r∗ = 3/5.

3. q∗ = 1 ⇒ r∗ = 1, but this is incompatible with q∗ = 0.

To sum up, the set of mixed-strategy NEs for the proposed game entails that player 1 chooses
a with probability one, whereas player 2 chooses any randomized strategy between A and B that
puts some weight in [3/5,1] to strategy A. Formally,

NE(Γ ) =
{
(p∗,m∗,q∗;r∗) ∈ [0,1]4 : (p∗,m∗,q∗) = (1,0,0), and r∗ ∈ [3/5,1]

}
.
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1

2
(r) A (1− r) B

(p) a 1,1 1,1
(m) bc −1,0 3,2
(q) bd −1,0 4,−1

Figure 4.3 – Computing Mixed-Strategy NE: (Semi-Reduced) Normal Form

For this example, we can depict the best-replies of the players, as shown in Figure 4.4.

13/5 r

1

q

q∗ ∈ BR1(r)

r∗ ∈ BR2(q)

Figure 4.4 – Best Replies

In particular, the strategy combination (a,A) is the only pure-strategy NE of this game. This
game has a continuum of mixed-strategy NEs, in which player 2 randomizes between A and B.
Nonetheless, the pure-strategy NE (a,A) is more plausible than any other NE according to the
subgame perfection criterion. To see this, go back to the extensive form representation of the
game. The, notice that at the subgame that initiates upon history (σ0,b,B), player 1 has strict
incentives to choose d, which gives her a payoff of 4 rather than a payoff of 3. Knowing this,
player 2 would never choose action B when call to play upon history (σ0,b) so as to get a payoff
of 0 rather than a payoff of -1. In other words, given that player 2 anticipates the optimal choice
of player 1 in the subsequent subgame, she would play action B with probability zero (and action
A with probability one), thus ruling out the continuum of NEs identified above. If we proceed by
backwards induction, then at the root of the original game player 1 would choose action a with
probability one, which would yield her a payoff of 1 rather than a payoff of −1.

Example 4.3. Consider the extensive form game depicted in Figure 4.10. The strategic form repre-
sentation of this game can be described by the payoff matrix: If we use p,q∈ [0,1] to parameterize
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1

(1,−1)

L

(−1,1)

R

L

(−1,1)

L

(1,−1)

R

R

2

Figure 4.5 – Computing Mixed-Strategy NE (cont.)

1

2
(q)L (1−q)R

(p)L 1,−1 −1,1
(1− p)R −1,1 1,−1

all mixed strategies, we can derive the expected payoffs:

U1(p;q) = (1−2q)+(4q−2)p

U2(q; p) = (2p−1)+(2−4p)q.

We obtain the best-reply correspondences:

BR1(q) =


p = 0 if q ∈ [0,1/2);

p ∈ [0,1] if q = 1/2;

p = 1 if q ∈ (1/2,1]

and

BR2(p) =


q = 0 if p ∈ (1/2,1];

q ∈ [0,1] if p = 1/2;

q = 1 if p ∈ [0,1/2).

By exploring possible compatible and incompatible cases from simultaneously requiring that p∗ ∈
BR1(q∗) and q∗ ∈ BR2(p∗), we see that p∗= q∗= 1/2 describes the unique NE of this game. There
is no pure-strategy NE and a unique (symmetric) mixed-strategy NE. The best-replies of this game
can be plotted as:
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11/2 q

1

1/2

p

p∗ ∈ BR1(q)

q∗ ∈ BR2(p)

In addition to providing a compelling approach to many practical strategic settings, mixed-
strategy NE is a powerful analytical tool to explore the behavior of individuals since, as Nash
(1951) demonstrated for the case of finite games, mixed-strategy NE always exists.2

Proposition 4.1

Each finite game Γ has (at least) one NE, possibly in mixed strategies (Nash, 1951).

What can we say then when a game Γ is not finite? Suppose that we are dealing with a game
that has continuous sets of pure strategies Si ⊆ Rk, for some (finite) integer k ≥ 1. For such games
where the sets of pure strategies are real subsets, the existence of NE is ensured if the sets of pure
strategies Si are convex and compact,3 and the preferences of the players are continuous.

Proposition 4.2

A game Γ =< N,S,u > such that each set of pure strategies Si ⊆Rk, with k < ∞, is a convex
and compact real set, and each utility function ui is continuous on Si, has (at least) one NE,
possibly in mixed strategies.

Furthermore, can we say something about the existence of pure-strategy NE? Of course, there
are natural environments which require us to be able to say when the NE solution concept can yield
a prediction in terms only of pure strategies. The proposition below describes the conditions that

2 A game Γ is said to be finite if the set of actions A = ∪i∈NAi of the players is finite. Game theorists have been
able to subsequently generalize the existence of NE to games with either contable infinite or continuum action sets.
This was a challenge basically of a technical nature, rather than of philosophical substance.

3 A set A⊆ Rk is convex if for each x,y ∈ A and each λ ∈ [0,1], we have that λx+(1−λ )y ∈ A. For a set A⊆ Rk

the statement that A is compact is equivalent to the statement that it is bounded and closed in Rk.
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we need to impose on a game in order to guarantee the existence of NE in pure strategies. For
games where the sets of pure strategies are real subsets, it turns out that it suffices that such sets
of pure strategies Si be convex and compact, and the preferences of the players be continuous and
quasi-concave. We say that a function f : A→ R on a convex set A ⊆ Rk is quasi-concave if for
each x,y ∈ A and each λ ∈ [0,1], we have that: f

(
λx+(1−λ )y

)
≥min{ f (x), f (y)}. Notice that

quasi-concavity is a weaker requirement than concavity: the definition of concave function implies
that the definition above of quasi-concave function, but not the other way around.

Proposition 4.3

A game Γ =< N,S,u > such that each set of pure strategies Si ⊆Rk, with k < ∞, is a convex
and compact real set, each and utility function ui is continuous and quasi-concave on Si, has
(at least) one pure-strategy NE.

Finally, some games exhibit discontinuities in the players’ utility functions. Even in such cases,
quasi-concavity of preferences is the most essential requirement that, together with other technical
conditions, that must be satisfied to guarantee the existence of pure-strategy NE.4

4.5. Dominated Strategies and Rationalizability

Using the assumption that the players share a common understanding of the game they play
(including the goals of each player and the logic behind the solution notion), NE is crucially based
on the derived implication that each player knows the equilibrium behavior of all the other players.
Game theorists, though, have developed alternative solution concepts which do not make use of
this implication. One approach that has proved particularly appealing is known as rationalizability.
Rationalizability requires that, rather than having common knowledge of the NE solution notion,
the players just share a common understanding of their rationality. In this way, relative to NE,
rationalizability asks for less from the players because they are not required to correctly guess
others’ choices at equilibrium. A caveat of this approach, however, is that rationalizability does
not allow one to make precise predictions about the players’ behavior for all games. Here is where
the NE solution clearly improves over rationalizability. Importantly, rationalizability is not at odds
with the NE logic. In particular, the NE requirements imply rationalizability but not the other way
around.

4 Reny (1999) is a nice reference to dive into the details of the existence of NE when the players’ preferences are
discontinuous. In essence, quasi-concavity of preferences continue to be the key condition.
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Example 4.4. To illustrate the ideas behind rationalizability, consider the strategic form game
depicted in Figure 4.6. Suppose that, rather than making any inferences about player 1’s plausible

1

2

L C R

U 2,6 0,4 4,3

M 3,3 0,0 1,2

D 1,5 3,6 2,7

Figure 4.6 – Soving a Game with Rationalizability. I

course of action, player 2 considers only her own available strategies. In particular, suppose that
player 2 computes her expected payoff under her strategy β2 = (x,0,1−x), with x∈ [0,1], for each

given possible strategy β1 followed by player 1. It follows that

U2(x,U) = 3+3x > 4 ⇔ x > 1/3;

U2(x,M) = 2+ x > 0 for each x ∈ [0,1];

U2(x,D) = 7−2x > 6 ⇔ x < 1/2.

Therefore, for values of x∈ (1/3,1/2), the mixed strategy β2 gives player 2 a strictly higher payoff
than the pure strategy C, regardless of the strategy β1 chosen by player 1. If the players’ rationality
is assumed to be common knowledge, then both players would share a common understanding of
such computation. Thus, both players would agree on that player 2 would never choose strategy
C. In other words, the would rule out C as a plausible choice and pay attention only to the game
in Figure 4.7. We can even apply the same logic a bit further. We observe that strategy U gives

1

2

L R

U 2,6 4,3

M 3,3 1,2

D 1,5 2,7

Figure 4.7 – Soving a Game with Rationalizability. II

player 1 a strictly higher payoff than strategy D, for each of the two remaining strategies of player
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2. Now, both players would commonly agree on that player 1 will never play strategy D, which
takes us to the relevant game shown in Figure 4.8. Now, both players would commonly agree on

1

2
L R

U 2,6 4,3

M 3,3 1,2

Figure 4.8 – Soving a Game with Rationalizability. III

that strategy L always gives player 2 a strictly higher payoff than strategy R, which takes to the
relevant game in Figure 4.9. Finally, taking this iterative process of reasoning one step further,

1

2
L

U 2,6
M 3,3

Figure 4.9 – Soving a Game with Rationalizability. IV

we conclude that the unique plausible choice by the players is (M,L), which yields a payoff of 3
to each players.

Example 4.4 above illustrates the following notions, which we can use to solve games without
making any assumptions on how players form beliefs about others’ choices.

Definition 4.5: Strict Domination

A pure strategy si ∈ Si of a player i is strictly dominated if there exists a mixed strategy
βi ∈ ∆(Si) such that Ui(βi,s−i)>Ui(si,s−i) for each s−i ∈ S−i.

Common knowledge of rationality suggests that the players would commonly agree on neglect-
ing strategies that are strictly dominated, thus ruling them out from consideration. Furthermore, as
Example 4.4 illustrates, the fact the some strategies of a given player are ruled out can, in some
cases, lead to that the strategies of other players become also strictly dominated. This iterative
process could, in principle, go on for an arbitrary number of rounds. To be precise, use k = 1,2, . . .
to indicate the rounds of our iterative process of elimination of strictly dominated strategies. We
then start by setting Ŝi,0 ≡ Si for each player i ∈ N, and by rewriting the set S of pure strategies
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profiles as S = Ŝ0 ≡×i∈N Ŝi,0. Then, for a given player i ∈ N and a given round k ≥ 1, let

Ŝi,k ≡
{

si ∈ Ŝi,k−1 : @βi ∈ ∆(Ŝi,k−1) s.t. Ui(βi,s−i)>Ui(si,s−i) ∀s−i ∈ Ŝ−i,k−1

}
be the set of player i’s strategies that “survive” to the k−th round of elimination of strictly domi-
nated strategies. Of course , we have Ŝi,k ⊆ Ŝi,k−1 for any i ∈ N. The particular description of the
iterative process of elimination of strictly dominated strategies is then as follows. We start at round
k = 1 by picking arbitrarily a player i ∈ N and then checking for the set Ŝi,1 ⊆ Ŝi,0. For the other
players j 6= i, we then simply set Ŝ j,1 ≡ Ŝ j,0 = S j at this initial round k = 1. Then, we can consider
the set Ŝ1 ≡× j∈N Ŝ j,1 of pure strategies profiles that are not strictly dominated at round k = 1, con-
ditional on the selected player i. Then, we proceed to round k = 2, where we pick another player
j 6= i, and, in a totally analogous way as in the previous round k = 1, consider the set Ŝ j,2 ⊆ Ŝ j,1.
Again, we set Ŝl,2 ≡ Ŝl,1 for each player l 6= j other than j, and then consider the set Ŝ2 ≡×l∈N Ŝl,1.
We proceed iteratively in this fashion for k = 1,2,3 . . . . We therefore obtain a sequence

Ŝ1 ⊇ Ŝ2 ⊇ ·· · ⊇ Ŝk ⊇ . . . ,

which is (weakly) decreasing with respect to set inclusion. Of course, if the sets of pure strategies
are finite, so that |S| is finite, then this naturally leads to that this iterative process reaches an end.
In general, we say that Ŝ(Γ ) is a rationalizable set of strategy profiles for a game Γ if there is
some k̄ ∈ {1,2, . . .} such that Ŝk̄ = Ŝk̄+1 = Ŝk̄+2 = · · · = Ŝ(Γ ). We can interpret these concepts
using the example above. In particular, we started from the set of strategy profiles Ŝ0 = S =

{U,M,D}×{L,C,R}. Then, we picked player i = 2 and then obtained Ŝ2,1 = {L,R} so that Ŝ1 =

{U,M,D}×{L,R}. Given this, at round k = 2, we were able to obtain Ŝ1,2 = {U,M}, for j = 1, so
that Ŝ2 = {U,M}×{L,R}. These iterations proceeded in the example to Ŝ3 = {U,M}×{L} and,
finally, to Ŝ4 = {M}×{L}= Ŝ(Γ ).

Although the example above has shown that rationalizability can lead to a unique prediction
of how the players behave, this is far from general. Rationalizability is not at odds to the NE
criterion. Since rationalizability requires common knowledge of the players’ rationality and the
NE criterion requires this as well, and adds the assumption of common knowledge of the solution
concept, it naturally follows that the set of NEs of any game is always a (weak) subset of the set
of rationalizable strategy profiles. To see this, suppose that some strategy profile s∗ is a NE of a
certain game Γ but does not belong the set of its rationalizable strategy profiles, s∗ /∈ Ŝ(Γ ). Then,
it must be the case that there is some player i, some round k > 1, and some strategy βi ∈ ∆(Si,k−1)
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such that
Ui(βi,s−i)>Ui(s∗i ,s−i) for each s−i ∈ Ŝ−i,k−1.

In particular, it then must be the case that Ui(βi,s∗−i) > Ui(s∗i ,s
∗
−i) for some βi ∈ ∆(Ŝi,k−1). Since

βi ∈ ∆(Ŝi,k−1) and Ŝi,k−1 ⊆ Si, we know that βi ∈ ∆(Si) as well. These implications, therefore, lead
to a contradiction with the NE requirement that s∗i ∈ BRi(s∗−i).

Since the NE requirement considers the same conditions that a set of rationalizable profiles
must satisfy (i.e., common knowledge of the game description and of the player’s rationality) and
then simply adds one extra condition (i.e, common knowledge of how players’ beliefs about other
decisions are made consistent with their actual choices) to such requirements, the set of NEs of
any game is a (weak) subset of the set of rationalizable profiles.

Observation 4.1

For any game Γ , the following relationships hold: NE(Γ )⊆ Ŝ(Γ )⊆ S.

Although the set of rationalizable profiles generalizes the set of NEs, we cannot use this rela-
tionship at this point to make claims about existence of rationalizable sets since a rationalizable
profile is notion that deals only to pure strategies.

4.6. Correlated Equilibrium
In the mainstream view of game theory presented up to this point, players have been thus far

assumed to choose their strategies individually and, more importantly, in a fully independent way.
Modifying this view can, however, be useful to analyze strategic situations in some environments.

Example 4.5. Consider the strategic form game depicted in Figure 4.10. This game describes
a typical environment commonly known in the social sciences as the battle of the sexes. One
interpretation of this setting is that the two players are a couple and that they independently, and
without any previous communication between them, decide one Friday evening between going to
the movies (M) or to the university stadium to watch a basketball game (B). As a happy couple,
each of them enjoys being with the other. Yet, player 1 would be (even) happier if they were able
to coordinate to attending the basketball game, whereas player 2 (relatively) prefers that they both
show up in the movie theatre.

It can be verified that this game has three NEs, two of them in pure strategies and another one in
mixed strategies: (M,M) (or, equivalently, ((1,0),(1,0))), (B,B) (or, equivalently, ((0,1),(0,1))),
and ((0.25,0.75),(0.75,0.25)). These NEs yield, respectively, the expected payoffs: (2,6), (6,2),
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1

2

M B

M 2,6 0,0

B 0,0 6,2

Figure 4.10 – Battle of the Sexes. I

and (3/2,3/2). Suppose, though, that the players can observe the realization of some public signal
and are able to commit themselves to choose their actions based on the outcome of the signal.
Suppose that the weather forecast predicts, with equal chance, that there can either rain (r) or be
sunny (s) on that Friday evening. Suppose that the couple (ex-ante, before choosing their strategies)
agrees on going to the movies if it is raining and on attending the basketball game if it is sunny.
Notice that we in fact are enlarging the description of the original game depicted above. Here,

(1/2) r s (1/2)

0

1

2 , σ1

M B

M 6,2 0,0

B 0,0 2,6
1

2 , σ2

M B

M 6,2 0,0

B 0,0 2,6

Figure 4.11 – The Battle of the Sexes with a Public Signal

conditional of the other player j following the prescribed strategy s j(σ
1) = M and s j(σ

2) = B it
is also optimal for player i to follow such a strategy (si(σ

1) = M and si(σ
2) = B). Furthermore,

the expected payoff to each player of following this recommendation is the linear combination
between 6 and 2, according to a 1/2 weight: an expected payoff of 4. More generally, if we
were able to choose a random device that yields one public signal with probability p, then any
linear combination p · (6,2)+ (1− p) · (2,6) could be achieved as the players’ expected payoffs.
Importantly, notice that the expected payoff of 4 Pareto dominates the expected payoff derived
from the only mixed-strategy NE of this game and it is more “just” or “equitable” than the payoffs
associated to any of the two pure-strategy NEs.
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It is interesting that players can be made better off when they are able to commit to public
random devices. Furthermore, players could do even better if they were able to commit their
actions to private, yet correlated, signals.

Example 4.6. Consider the modification of the battle of the sexes setting described by Figure 4.12.
Now, we can verify that this game has again three NEs, two of them in pure strategies and an-

1

2

M B

M 5,1 0,0

B 4,4 1,5

Figure 4.12 – Battle of the Sexes. II

other one in mixed strategies: (M,M) (or, equivalently, ((1,0),(1,0))), (B,B) (or, equivalently,
((0,1),(0,1))), and ((0.5,0.5),(0.5,0.5)). These NEs yield, respectively, the expected payoffs:
(5,1), (1,5), and (5/2,5/2). As indicated earlier, by using a public randomization device with
weight p ∈ [0,1] on a signal realization that recommends the two players to choose M (and the
weight (1− p) on a signal that prescribes the two players to choose B), the players can achieve any
expected payoff combination

p · (5,1)+(1− p) · (1,5).

More generally, by considering a device that sends signals that give positive probability to rec-
ommendations leading to each of the three NEs, any expected payoff in the convex hull of the
respective NEs payoff combinations5 can be achieved.

Now, suppose that the players were able to commit their actions to a device that sends correlated
but privately observed signals. Suppose, for example, that they agree on hiring some external
expert. The expert tosses a fair three-side dice and makes recommendations as follows. The expert
(honestly) reveals: to player 1 whether the outcome is 1 or lies in the set {2,3}, and to player 1
whether the outcome is 3 or lies in the set {1,2}. Now, consider a strategy for player 1 that tells her
to play M if she receives the outcome of 1 and to play B if she hears {2,3}. Analogously, consider
a strategy for player 2 that tells her to play B if she receives the outcome of 3 and to play M if she
hears {1,2}. Then, notice that if player 1 hears the outcome 1, then she believes that player 2 will
choose M because she knows that player 2 will hear {1,2} (because 1∈ {1,2}). Then, it is optimal

5 Formally, the convex hull of a set of points X ⊂ Rn is the smallest convex set containing X and it is usually
denoted as co(X).
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for player 1 to choose M. On the other hand, if player 1 hears the outcome {2,3}, then she believes
that player 2 will choose M with probability 1/2 (and, thus, B with probability 1/2) because she
knows that player 2 will hear {1,2} with probability 1/2 and 3 with probability 1/2. Then, it
is optimal for player 1 to randomize between M and B according to any weight (because player
1 is indifferent between the two actions). A totally analogous reasoning shows that it is optimal
for player 2 to follow the recommendation prescribed for her, given that player 1 is following her
own recommendation. The prescribed prescription profile is, therefore, self-enforcing and, more
importantly allows the players to achieve a payoff profile (10/3,10/3), which is outside the linear
combination of the two pure-strategy NEs. More generally, it is outside the convex hull of the three
possible payoffs achievable under the three original NEs.

These ideas were originally explored by Aumann (1974). In particular Example 4.5 and Exam-
ple 4.6 motivate the following definition of correlated equilibrium proposed by R. J. Aumann.

Definition 4.6: Correlated Equililbrium

Given a game Γ , a correlated equilibrium (CE) is a probability distribution p∗ ∈ ∆(S) over
the set of pure-strategy profiles such that for each si ∈ Si chosen with positive probability
under p∗ (that is, for each si ∈ Si such that ∑s−i∈S−i p∗(si,s−i)> 0), we havea

∑
s−i∈S−i

p∗(s−i |si)ui(si,s−i)≥ ∑
s−i∈S−i

p∗(s−i |si)ui(s′i,s−i)

for each s′i ∈ Si.

a The notation p∗(s−i |si) indicated the conditional probability of the string of strategies s−i of all players
other than i, given that player i picks strategy si.

We will use CE(Γ ) to denote the set of CE of game Γ . Let me comment on the intuition
behind the CE concept. All players are assumed to know (ex-ante, before picking their strategies)
that some external “device” or “mediator” will recommend the players to choose some strategy
profile s with probability p∗(s). Each player, however, only gets to know (at an interim stage but
still before picking her strategy) her own recommendation si. Contrary to the NE concept spirit
and requirements, under the CE rationale players know that the strategies recommendations are
correlated. Therefore, each player i can use the information si that she privately receives from
the mediator to compute her beliefs—using the standard definition of conditional probability or,
in other words, using Bayes’ rule—about the prescriptions s−i received by the rest of the players.
Then, given a CE p∗ candidate, each player is required to choose the strategy si that maximizes
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her expected utility, given that all other players follow their own CE recommendations s−i and,
notably, using the conditional probability p∗(s−i |si) to compute her expected payoffs.

Example 4.7. We can use the details of Example 4.6 to illustrate how CE can be computed. In the
example, we dealt with a CE distribution proposal p∗ such that

p∗(M |M) = 1, p∗(M |B) = p∗(B |B) = 1/2

for both player 1, whereas

p∗(B |B) = 1, p∗(M |M) = p∗(B |M) = 1/2

for player 2. Notice that conditional beliefs and, therefore, the induced expected payoffs have a
symmetric structure. Then, we can compute the expected payoffs of player 1 as:

(1) If player 1 plays s1 = M based on hearing signal realization 1, then

∑
s2∈S2

p∗(s2 |s1)u1(s1,s2) = 1 · [5]> 1 · [4].

(2) If player 1 plays s1 = M based on hearing signal realization {2,3}, then

∑
s2∈S2

p∗(s2 |s1)u1(s1,s2) = (1/2) · [5]+ (1/2) · [0] = (1/2) · [4]+ (1/2) · [1]

(3) If player 1 plays s1 = B based on hearing signal realization {2,3}, then

∑
s2∈S2

p∗(s2 |s1)u1(s1,s2) = (1/2) · [4]+ (1/2) · [1] = (1/2) · [5]+ (1/2) · [0].

Therefore, conditional on the correlated recommendations p∗ and given that player 2 follows her
own prescription, player 1 has no (strict) incentives to deviate from what p∗ prescribes for her.
Given the symmetric structure of conditional beliefs and induced payoffs, we obtain the analogous
implication for player 2. As indicated earlier, the expected payoff of any of the two players under
the computed CE can be obtained as:

(1/3) · [5]+ (2/3) · [5/2] = 10/3.

The expected payoffs that the players can achieve in this example are depicted in Figure 4.13.
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u1

u2

(5,1)

(1,5)

(5/2,5/2)

(10/3,10/3)

Figure 4.13 – Achievable Payoffs for the Battle of the Sexes II

Notice that the only difference with the NE criterion is that mixed strategies in a CE can be (ex-
ante, before the players actually choose their strategies) correlated, whereas NE mixed strategies
are assumed to be (ex-ante) independent—though, of course, NE strategies are in general ex-post
(after the players pick them) correlated. This suggests that the set of CE generalizes the set of
NEs, that is, NE(Γ )⊆CE(Γ ) for each game Γ . To see this, consider a NE β ∗ = (β ∗1 , . . . ,β

∗
n ) of a

game Γ . Then, propose a probability distribution p∗ ∈ ∆(S) such that p∗(s) = ∏i∈N β ∗i (si) for each
s ∈ S. Then, we have that p∗(s−i |si) = ∏ j 6=i β ∗j (s j) so that the CE requirement that each player
must choose si ∈ Si so as to maximize

∑
s−i∈S−i

p∗(s−i |si)ui(si,s−i)

translates into choosing β ∗i ∈ ∆(Si) such that if β ∗(si)> 0, then si must maximize

Ui(si,β
∗
−i) = ∑

s−i∈S−i

∏
j 6=i

β
∗
j (s j)ui(si,s−i).

In other words, the CE requirement translates into picking a mixed strategy β ∗i ∈ BRi(β
∗
−i). Of

course, this is ensured since we started by considering that β ∗ is a NE profile. As an interesting
implication, note that since CE is a mixed-strategy equilibrium notion, we can use the relationship
that we have obtained to guarantee the existence of CE.
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Proposition 4.4

Each NE is a CE and, as a consequence, each finite game Γ has (at least) one CE.

The notion of CE, and other solutions concepts that have been proposed using the general ratio-
nale behind the CE, have recently brought the attention of many game theorists, as well as applied
social scientists, interested in exploring the incentives of individuals to behave according to some
“social desirable” prescriptions. In this sense, NE perhaps gives us a tool more suitable to study
how strategic individuals actually behave, whereas CE enables us to explore what outcomes are
achievable in environments where there are some socially desired outcomes. In short, the NE has
been traditionally more linked to positive questions whereas the CE concept has drawn the game
theorists’ attention relatively more towards normative questions. In particular, the “no-incentive-
to-deviate” conditions stated in the definition of CE, and explored in the previous example, can be
viewed as exactly as the type of the incentive compatibility conditions upon which rely the branch
of the literature on mechanism design (or contract theory).
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5. Bayesian Games

We have thus far assumed that players know other players’ preferences over terminal histories or,
equivalently, over strategy profiles. This might be seen as a very restrictive assumption in some
environments. Formally, we say that a game has incomplete information when at least one player
does not know (with certainty) the payoff that some other player receives from some strategy
profile (or equivalently, terminal history).

Example 5.1. Consider again the signaling situation described in Figure 3.3. In principle, we could
abstract from the sequence of choices between player S and R, and thus represent such a situation
in a strategic form fashion as follows. Here, after the move of Nature, player S knows that she

(0.4) tS = H tS = L (0.6)

0

S

R
m c

E 6,10 0,4
NE 10,10 4,4

S

R
m c

E 3,0 −3,4
NE 10,0 4,4

Figure 5.1 – Signaling Game with Simultaneous Moves

has either low (tS = L) or high ability (tS = H). Such possible outcomes of uncertainty, which are
privately known by a player, are known as her types. As already introduced in chapter 3, a player’s
type fully describes some payoff-relevant feature, privately known by the player, that results as an
outcome of chance. For a game Γ where there is extrinsic uncertainty, let Ti, with typical element
ti ∈ Ti, be the set of possible types of player i. In this example, player S has two possible types
tS ∈ TS = {L,H}. On the other hand, player R does not know player S’s type and, furthermore,
there is no feature which might be known privately only by R as a result from the move of Nature.



Therefore, player R has here a trivial (singleton) set of types TR = {R}, which can be described as
stating that the only payoff relevant feature of player R is simply her name. Intuitively, when player
S’s type is L, she knows that she is playing according to the right-hand payoff matrix. Also when
her type is H, player S knows that she is playing according to the right-hand payoff matrix. Unlike
this, player R does not know which payoff matrix describes her actual payoffs. Formally, this is
can be viewed as a situation of incomplete information rather than as a situation with imperfect
information because player R’s uncertainty is relative to the players’ preferences. Player R can,
nonetheless, form beliefs about player S’s types according to the prior µ that describes the initial
move of Nature. This allows us to re-interpret this game in fact as one of imperfect information.

Dealing with incomplete information can get really messy because common knowledge of the
description of the game would require a player form beliefs about others’ preferences, beliefs
about what others believe about what the player believes about others’ preferences, and so on.
Fortunately, as already mentioned, we can circumvent these difficulties by treating each incomplete
information game as one of imperfect information, provided that each player does know both the
possible payoffs that other players may have and can use a (consistent) probability distribution
over such set of possible payoffs.

J. C. Harsanyi (Harsanyi (1967-68)) provided an elegant way of making such a transformation
from incomplete information games to imperfect information games. Specifically, we consider that
the possible payoffs of the players are given by realizations of a random vector (or, equivalently,
by a “historical” move of chance) such that each random variable in the vector gives the payoffs of
each player. The random variables may be correlated. Then, each player observes the realization
of his won random variable, though not necessarily those of the others. As it is the case with the
rest of the description of the game, the (joint) probability distribution over the players’ payoffs is
(commonly) known by everyone. This extended game is known as a Bayesian game (of incomplete

information) and a NE of such an extended game is known as a Bayes–Nash–Equilibrium. We
have already referred to a possible realization of each random variable as a possible type for the
corresponding players. Notice that, using this extended game which asks us to include a move of
chance, we have ended up with a game of imperfect information where a player (possibly) cannot
distinguished between histories due to the move of Nature.
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Definition 5.1: Bayesian Game

A Bayesian Game Γ consists of Γ =< N,S,T,π,u >, where:
(1) N = {1, . . . ,n} is a finite set of players;
(2) S =×i∈NSi is a set of profiles s = (s1, . . . ,sn) of (pure) strategies for the players;
(3) T =×i∈NTi is a set of type profiles;
(4) π ∈ ∆(T ) is a probability distribution over the set of the players’ type profiles;
(5) u≡ (ui)i∈N is a list of utility functions ui : S×T →R such that ui(s, t) is the payoff that
receives player i when the players choose the strategy profile s and their type profile is t.

Hence, in a Bayesian Game each player is identified by a pair (i | ti), with i∈N and ti ∈ Ti, which,
in addition to her name i, also tells us the particular payoff-relevant feature ti that she has. The set
Si of pure strategies of each player i will remain constant when we consider a Bayesian game.
However, since a player may adopt now different types which describe different pieces of informa-
tion that she may have, she can now make her choices contingent of her type. Let βi(· | ti) ∈ ∆(Si)

be a mixed strategy for player i, conditional on her type being ti. The collection of all possible pure
strategies for player i (across her set of possible types) is then βi ≡ {βi(· | ti)}ti∈Ti

. In a Bayesian
game, each player is interested in predicting the types of other players (which, in principle, may
be unknown to her). Since π(t1, . . . , tn) is assumed to be (commonly) known by the players, each
player i can use the standard definition of conditional probability (or, equivalently, Bayes’ rule)
to obtain the conditional probability πi(t−i | ti). By doing so, player i assigns probabilities to the
other players’ types (and, therefore, to their payoff-relevant features) in a way consistent with the
probability π with which Nature selects each type profile t. In general, the players derive the prob-
ability πi(t−i | ti) from the typical definition of conditional probability in modern probability or,
equivalently, from Bayes’ rule. Using Bayes’ rule is indeed the the feature that gives its name to
this approach. In particular, we have

πi(t−i | ti) =
π(ti, t−i)

∑t−i∈T−i π(ti, t−i)
whenever ∑

t−i∈T−i

π(ti, t−i)> 0.

Then, given that a player identified as (i | ti) chooses a pure strategy si with positive probability
(i.e., βi(si | ti) > 0), we can compute her expected payoffs, conditional on the rest of the players
choosing mixed strategies, as

Ui(si,β−i| ti)≡ ∑
t−i∈T−i

πi(t−i | ti) ∑
s−i∈S−i

∏
j 6=i

β j(s j | t j)ui(si,s−i, ti, t−i).
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Notice that the expected payoffs derived above encompass both the intrinsic uncertainty that stems
from the fact that other players may play according to mixed strategies and the extrinsic uncertainty
due to the “historical” move of Nature that provide the players with their types (that is, their pieces
of private information).

Definition 5.2: Bayes–Nash Equilibrium

A Bayes–Nash–Equilibrium (BNE) of a Bayesian game Γ is a profile of collections of mixed
strategies β ∗ such that for each player i ∈ N and each type ti ∈ Ti, if β ∗i (si | ti) > 0, then it
must be the case that Ui(si,β

∗
−i| ti)≥Ui(s′i,β

∗
−i| ti) for each s′i ∈ Si.

In practice, computing BNE requires us to enlarge the original game and, in particular, to con-
sider the best-reply correspondences of each player (i | ti). Each player (i | ti) will face other players
( j | t j) according to the conditional probability πi(t−i | ti), yet player (i | ti) will not play against any
player (i | t ′i), for t ′i 6= ti. Other that these considerations, finding BNEs is in practice not different
from finding NEs. Indeed, a BNE is just a NE of an enlarged game, where players are distinguished
by their types (which describe their payoff-relevant private information), in addition to their names.

Example 5.2. Consider again the Bayesian game representation of the signaling example. How-
ever, suppose that, instead of working only with the fixed value π(H) = 0.4, the probability
π(H) ∈ (0,1) is allowed to vary to check for the generality of the messages conveyed by this
example. Notice first that, for both type-players (S |H) and (S |L), the pure strategy E is strictly
dominated by NE. The three type-players of the enlarged game, R, (S |H), and (S |L), would com-
monly agree on this, regardless of the particular value of the probability π(H). Then, conditional
on dropping out the pure strategy E, we can derive player R’s expected payoffs and, accordingly,
obtain that R would (strictly) prefer to choose m rather than c if

[10]π(H)+ [0](1−π(H)) = 10π(H)> [4]π(H)+ [4](1−π(H)) = 4.

We then obtain that m is strictly preferred by R to c if π(H) > 2/5 = 0.4. Conversely, R strictly
prefers c rather than m if π(H) < 0.4. Finally, R is indifferent between both options m and c if
π(H) = 0.4, which is precisely the original proposed value for the probability of player S being of
high productivity. To summarize, while (NE,NE,m) is the unique BNE of this game for π(H)>

0.4, (NE,NE,m) is the unique BNE for π(H) < 0.4. For the originally proposed priors, π(H) =

0.4, we have that both types of the Sender optimally choose to not get educated whereas the
Receiver randomizes, according to any weight β ∗R(m) ∈ [0,1], between offering a managerial or
a clerical position to the Sender.
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The above described equilibria would seemingly appear as the most reasonable prediction of
how the players behave in this signaling situation. This view, tough, would be deceiving as it is
fundamentally flawed. To see this, recall that the original description of this situation includes a
round of sequential moves, where S moves first and then, given the information provided by S’s
educational choice, R makes her own choice. In turn, R’s choice on the kind of position that it offers
to S influences S’s educational choice given that S anticipates R’s optimal decisions. These crucial
features are of substantial importance and, as it turns out, they are not incorporated into the analysis
when we consider the Bayesian game representation of this setting. This is the case because
(as in any strategic or normal form representation) the Bayesian representation always considers
the situation as if the players move simultaneously instead, thus, ignoring key features of the
game description such as the inherent dynamics and what each player knows at each point. More
importantly, in this particular environment, the Bayesian representation neglects what R can learn
from S’s choice. Both information transmission and learning turn out to be the key phenomena
that signaling games allow us to explore. Specifically, using the Bayesian representation of this
game, we cannot resort to sequential rationality considerations. By computing the set of NEs of the
enlarged signaling game, we are in fact missing some NEs from the original game. Intuitively, this
is the case because the enlarged game where players are considered to move simultaneously does
not coincide exactly with the original game. Incorporating sequential rationality considerations
into the rationale behind the BNE solution concept for dynamic settings is the goal of the perfect

Bayes–Nash–Equilibrium notion that we shall consider later on in Section 6.1.

Nonetheless, the BNE solution concept is suitable to predict the players’ behavior for situa-
tions where they decide simultaneously—or without any further information about other players’
decisions. In such settings, no relevant strategic considerations of the original game, neither on
dynamic nor on informational bases, are left aside from the analysis.

Example 5.3. To illustrate the analytical power of the Bayesian approach to games with extrinsic
uncertainty where players do move simultaneously, consider the following variant of the Cournot
duopoly game explored earlier. As before, let qi ≥ 0 be the quantity of the good produced and
offered by firm i ∈ {1,2}, and let P = max{a− b(q1 + q2),0} be the (inverse) demand function
for the good in this market, with a,b > 0. However, suppose now that the cost to firm 1 from
producing its quantity is zero and that the marginal cost of firm 2 can be either cL (low) or cH

(high), with 0 < cL < cH < a. The production cost of firm 2 is its private information, and Nature
selects cL with probability p ∈ (0,1). The set of types of firm 2 can therefore be established as
{L,H}, indicating either low (t = L) or high (t = H) cost. Firm 2 knows its type whereas firm 1
can only assess that, with probability p, firm 2 has low production cost (and that, with probability
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1− p, firm 2’s production cost is high). Let qL
2 and qH

2 denote the quantities chosen by firm 2 when
its cost is, respectively, cL and cH . The two firms choose their quantities simultaneously. If we
consider this situation as a Bayesian game, then the profits to firm (2 | t) (that is, conditional on its
type being t = L,H) are given by the expression

Π2(q1,qt
2) =

[
(a− ct)−b(q1 +qt

2)
]
qt

2 for t = L,H.

Considering the nontrivial case qt
2
∗> 0, firm 2’s problems are solved by considering the first-order

conditions ∂Π2(q1,qt
2)/∂qt

2 = 0 (for t = L,H), which give us the linear expressions

qt
2 =

a− ct

2b
− 1

2
q1 for t = L,H.

As for firm 1, its expected profits are given by

Π1(q1,qL
2 ,q

H
2 ) =

(
p
[
a−b(q1 +qL

2)
]
+(1− p)

[
a−b(q1 +qH

2 )
])

q1.

The first-order condition ∂Π1(q1,qL
2 ,q

H
2 )/∂q1 = 0 yields

q1 =
a

2b
− p

2
qL

2−
1− p

2
qH

2

We have thus obtained a linear system with three equations and three unknowns. If we let a= b= 1,
p = 1/2, cL = 0, and cH = 1/4, then we can write this system of equations as

q1 =
1
2 −

1
4qL

2−
1
4qH

2

qL
2 = 1

2 −
1
2q1

qH
2 = 3

8 −
1
2q1.

Solving this system of equations, we obtain a unique solution

q∗1 = 6/16, qL
2
∗
= 5/16, and qH

2
∗
= 3/16,

which constitutes the unique (pure-strategy) BNE of this Cournot duopoly game with uncertain
costs and asymmetric information. We observe that firm 1 retains a higher fraction of the market
than firm 2, for any of the two possible costs affecting firm 2. Regarding the profits of the firms in
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this equilibrium, we obtain:

Π1(q∗1,q
L
2
∗
,qH∗

2) = 4
(

3
16

)2

, Π2(q∗1,q
L
2
∗
) =

(
5

16

)2

, and Π2(q∗1,q
H
2
∗
) =

(
3

16

)2

.

Thus, the firm that faces uncertainty obtains higher profits than the firm that knows its own pro-
duction costs. Intuitively, the possibility of incurring higher costs damages the profits of firm 2,
relative to firm 1.

Mixed-strategy BNE can be computed in a totally analogous way, as the following example
illustrates.

Example 5.4. Consider a public good situation where the mayors of two nearby cities are consid-
ering whether or not to build a high-speed railway to improve the commute between their cities.
Building the railway costs 20 billions (b) dollars but the railway is only valuable to a city if they
build as well a convention center with a station for the train in it. If the convention center is built,
then the value of the railway (net from any construction costs) is 30b to the city that uses it along-
side with the convention center. The protocol to determine how the railway may be built is as
follows. The two majors send independent messages to the state governor. Formally, major i = 1,2
must send a message containing her city valuation vi ∈ {0,30} for the railway project. The gover-
nor decides then that the project goes ahead and each city pays an equal share of the railway cost
if v1 = v2 = 30. If only one city shows interest, then the project goes ahead and the interested city
covers by itself the 20b of the railway project. If none of the majors reports interest for the project,
then the railway is not built. In this situation the set of types vi of each player i = 1,2 consists of
her private valuation for the project Ti = {0,30}. Suppose that the probability of major i having no
interest for the project, vi = 0, is p ∈ (0,1). Suppose further that the valuations of the two majors
are independent. In this case, we have

π(v1,v2) =


p2 if v1 = v2 = 0

(1− p)2 if v1 = v2 = 30

p(1− p) if v1 6= v2.

The set of pure strategies of each player i is simply Si = {0,30} which describes the possible
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messages that the major can send to the governor. The utility to player i is then

ui(s1,s2,v1,v2) =



vi−20 if si > s j

vi if if si < s j

vi−10 if si = s j = 30

0 if si = s j = 0.

A mixed strategy for player i is βi = {βi(· |0),βi(· |30)}. Let us use ri = βi(0 |0) ∈ [0,1] and
qi = βi(0 |30) ∈ [0,1] to parameterize such an strategy. First, note that we must have r∗i = 1 in
equilibrium. This is intuitive: a major that does not value the railway will not report to the governor
otherwise because she will have to contribute to build it. Algebraically, notice that

Ui(βi,β j |0) = ∑
v j∈Tj

π(v j |0) ∑
si∈Si

∑
s j∈S j

βi(si |0)β j(s j |v j)ui(si,s j,vi,v j)

= p
[
rir j[0]+ ri(1− r j)[0]+ (1− ri)r j[−20]+ (1− ri)(1− r j)[−10]

]
+(1− p)

[
riq j[0]+ ri(1−q j)[0]+ (1− ri)q j[−20]+ (1− ri)(1−q j)[−10]

]
.

We observe that it must be the case that r∗i = 1: reporting interest in the project is a (strictly)
dominated strategy for any major that does not value the railway whatsoever. This is the case for
both i = 1,2. Exploring the incentives for type vi = 30 is more tricky. Now, conditional on making
use of the obtained implication that r∗i = 1 for both i = 1,2, we have

Ui(βi,β
∗
j |30) = p

[
qi(1)[0]+qi(1−1)[30]+ (1−qi)(1)[10]+ (1−qi)(1−1)[20]

]
+(1− p)

[
qiq∗j [0]+qi(1−q∗j)[30]+ (1−qi)q∗j [10]+ (1−qi)(1−q∗j)[20]

]
.

This expected utility can be rearranged so as to obtain

Ui(βi,β
∗
j |30) =

[
10p+10(1− p)q∗j +20(1− p)(1−q∗j)

]
+
[
10−20p−20(1− p)q∗j

]
qi.

To compute the set of BNEs is useful here to specify the function ψ(p)≡ (1−2p)/(2−2p). We
observe that ψ(p) ∈ (0,1/2) is (strictly) decreasing in p, with ψ(0) = 1/2 and ψ(1/2) = 0. Then,
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the best-reply of player i, conditional on having valuation vi = 30 for the project, is

BRi(q j |30) =


q∗i = 1 if q j < ψ(p);

q∗i ∈ [0,1] if q j = ψ(p);

q∗i = 0 if q j > ψ(p).

By checking for possible compatibilities and inconsistencies we obtain the following BNEs:

1. For p ∈ (0,1/2), we have that q∗i = 1 and q∗j = 0 describes an equilibrium.

2. For p ∈ (1/2,1), we have that q∗i = q∗j = 0 describes an equilibrium.

3. For p ∈ (0,1/2), we have that q∗i = q∗j = ψ(p) ∈ (0,1/2) describes a set of equilibria.

Thus, we obtain multiple BNEs for the game describing this public good provision problem. We
have both symmetric and asymmetric equilibria, as well as equilibria in pure strategies and in
mixed strategies.

Another important field where BNE is widely applicable because the players’ choices are made
simultaneously is that of auctions.

Example 5.5. Consider a telecom public institution, or seller, that wishes to sell the rights to
operate in a given spectrum to several mobile operators, or players. The public institution wishes
to earn as much money as possible from selling the rights. The number of players is n and the
valuation of player i for the spectrum is υi ∈ [0,M], for some M > 0. Furthermore, suppose that the
valuation υi of each operator i ∈ N is drawn according to a uniform distribution from the interval
[0,M]. In addition to being identically distributed, the random variables {υi}i∈N are independent.
The spectrum is offered to the mobile operators through an auction where each operator acts as a
bidder. If operator i wins the spectrum, then it has to pay x for it so that υi− x is player i’s payoff.
Each operator i knows its own valuation υi before engaging in the auction but does not know other
operators’ valuations. The seller of the spectrum does not know the bidders’ valuations but it
knows that υi ∈U [0,M] for each i ∈ N and that the valuations υi are independent. In the auction,
the bidders i must simultaneously submit a bid bi ≥ 0 for the rights to operate in the spectrum.

Consider first a second-price auction. In this auction, the spectrum are awarded to highest
bidder but it must pay a price equal to the second highest bid. If more than one bidder submits
the highest bid, then the spectrum is randomly assigned (with equal probability) to one of them.
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Specifically, for a (pure-strategy) profile b = (bi,b−i), let B(b) ≡ maxi∈N {bi} be the highest bid
among the bids in the profile b. Then, under the second-price auction protocol, we have that x(b) =

max j∈N
{

b j |b j 6=B(b)
}

so that ui(b)= υi−x(b) if bi ∈ argmaxi∈N bi and ui(bi,b−i)= 0 otherwise.
Finding the BNE of a second-price auction is easy because submitting b∗i =υi, given that each other
bidder is also submitting its actual valuation, is a strategy that gives (1) ui(b∗i ,b

∗
−i)=υi−x(b∗)> 0

whenever υi = B(b∗) (that is, whenever bidder i is the one that values most the spectrum rights),
or (2) ui(b∗i ,b

∗
−i) = 0 whenever υi ≤ B(b∗). Notice that no bidder has (strict) incentives to deviate

from this equilibrium prescription. This BNE is efficient because the spectrum rights are awarded
to the operator that values them most. However, the seller is not able to obtain all potential benefits
from the trade because the winner bidder pays an amount lower than its actual valuation.

Consider now the case of a first-price, sealed-bid auction where the spectrum rights are awarded
to highest bidder that, in addition, must pay a price equal to the its own bid. Unlike the case of
a second-price auction, for which we have seen that bidders have incentives to reveal their actual
valuations for the actioned good, the analysis of first-price auctions is more subtle. First, notice
that no player has incentives to submit an amount higher than its valuation because it would obtain
a negative payoff in the event that it wins the auction. Furthermore, intuition tells us that each
player would wish to bid an amount lower than its actual valuation so that it can obtain positive
payoffs in the event that it wins the auction. Assume that, in equilibrium, each player i bids a
fraction α ∈ [0,1] of its actual valuation so that b∗i has the form b∗i = αυi. Then, using the fact that
each υi ∼U [0,M], with the υi being independent random variables, we know that the probability
that a given group of n− 1 bidders’ valuations are simultaneously below x is (x/M)n−1. So, if
each other player j 6= i bids according to b∗j = αυ j, then player i’s expected payoff of bidding and
amount x is

Ui(x,b∗i |υi) = (υi− x)
( x

αM

)n−1
.

Notice that here the fraction x/αM gives us the probability some player j, other than player i, bids
less than x, conditional on player j bidding according to αυ j and on υ j ∼U [0,M]. The first-order

condition ∂Ui(x,b∗i |υi)/∂x = 0 for player i’s best-reply is then

(n−1)(υi− x)xn−2− xn−1 = 0,

which gives us x∗ = υi(n− 1)/n. Therefore, the optimal value α∗ of parameter α must equal
(n− 1)/n. In other words, in the (pure-strategy) BNE each operator uses the bidding strategy
b∗i = (n− 1)υi/n. As in the case of a second-price auction, the BNE is efficient because the
operator that values most the spectrum rights wins the auction. The winner pays here an amount
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lower than its actual valuation as well because (n− 1)/n < 1. Note that, if n becomes very large
(so that n tends to infinity), then equilibrium bids approach their true valuations.

Finally, using the BNE solution concept, Harsanyi (1973) gave a very compelling interpreta-
tion to the fact that players may choose mixed-strategy NE in a game. His approach consists of
starting with some original game under certainty and then (artificially) adding—a relatively small
amount of—extrinsic uncertainty to such a game. If the original game has mixed strategies NEs,
then each of these NEs can be obtained as a BNE of the slightly modified game by considering
that the introduced uncertainty (asymptotically) vanishes. Harsanyi (1973)’s intuitive message is
that, in general, we can reinterpret a NE that involves randomized strategies as the result of mi-
nor perturbations that have been omitted from the description of the original game. In intuitive
terms, such perturbations make the players uncertain between different payoff specifications and,
therefore, make them “hesitate” between some pure-strategy optimal decisions and others.1

1 Myerson (1991), Chapter 3.10, provides an insightful example to illustrate this point.
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6. Equilibrium Refinements

The NE solution concept exists (at least in mixed strategies) in general for any game that we
may consider. Many games, however, have multiple NEs and, depending on the particular circum-
stances described by the game, some of them can be argued to be more “appealing” or “reasonable”
than others. Selecting among NEs is of interest because it enhances the power of game theory as
a set of analytical tools for the social sciences. Thus, we wish to select, or refine, NEs in order to
gain accuracy in our understanding and predictions about behavior in strategic settings.

There are typically several approaches that can be pursued to refine NEs, both within exten-
sive and strategic form games. Some approaches are based on considering carefully the detailed
description of how players move in dynamic situations (as it is the case, for instance, with the
sequential rationality condition and the SPE solution concept) or of the information that the play-
ers have at each point. Other refinements are based either on perturbing the strategies optimally
chosen by the players, on perturbing the payoffs of the game, or on introducing some amount of
uncertainty to the original game.

6.1. Perfect Bayes-Nash Equilibrium

The first refinement of NE that we considered in these notes was that of SPE, where equilibria
were selected by requiring that the players followed their optimal choices against others’ decisions
at each subgame where they were due to play. When information is imperfect and this makes
the players unable to distinguish in which history they are when making their decisions, applying
sequential rationality can be more tricky. In fact, players do not choose at the root of a subtree when
they must take their decisions at non trivial information sets. Perfect Bayes–Nash equilibrium is a
solution concept that, besides refining NE, naturally incorporates both (1) the sequential rationality
criterion that we already considered for the SPE solution concept and (2) the way in which players
make inferences regarding information they do actually not posses that we already considered for
the BNE solution concept.



Given an extensive form game Γ , a belief for player i 6= 0 at an information set h ∈Hi is a
(conditional) probability distribution µi(· |h) ∈ ∆(h) so that µi(σ |h) is the probability that player
i assigns to history σ ∈ h being the true history where she must play. A set of beliefs µi for player
i 6= 0 is then a set of probability distributions µi ≡ {µi(· |h) |h ∈Hi}, one probability distribution
for each information set where the player is due to play. A system of beliefs µ for the extensive
form game Γ is then a profile of sets of beliefs for the players involved in the game, µ ≡ (µi)i∈N .
For a history σ ∈ h ∈Hi, let Ui(ρ |σ) denote the expected payoff to player i when the players
randomize their strategies according to the behavior strategy profile ρ , conditional on σ being
the true history where player i must play. For a behavior strategy profile ρ , let Pρ(σ) denote the
probability of reaching history σ under the strategy profile ρ . At a practical level, the probabilities
Pρ(σ) are computed using the total probability rule, according to the probability weights given by
the strategy profile ρ , across the tree representation of the extensive form game.

Definition 6.1: Perfection of Bayes-Nash

A perfect Bayes-Nash equilibrium (PBNE) of an extensive form game Γ is a profile of
behavior strategies ρ∗ and a system of beliefs µ∗ such that

(1) each player i ∈N acts according to the sequential rationality criterion, conditional on the
system of beliefs µ∗: for each h ∈Hi, we have

∑
σ∈h

µ
∗
i (σ |h)Ui(ρ

∗
i ,ρ

∗
−i |σ)≥ ∑

σ∈h
µ
∗
i (σ |h)Ui(ρi,ρ

∗
−i |σ) ∀ρi.

(2) the system of beliefs µ∗ is consistent with the strategy profile ρ∗ according to Bayes’
rule: for each player i ∈ N and each information set h ∈Hi , we have

µ
∗
i (σ |h) =

Pρ∗(σ)

∑σ ′∈hPρ∗(σ ′)
,

whenever ∑σ ′∈hPρ∗(σ
′)> 0.

The beliefs µi(· |h) are commonly known as posterior beliefs, in contrast to the prior beliefs
µ(· |σ), with P(σ) = 0, introduced in the description of an extensive form game that describe how
Nature moves. Intuitively, for sequential games where there is extrinsic uncertainty, the players
begin with some prior beliefs about. Also, in sequential games with no extrinsic uncertainty, but
where some players are uncertain about previous moves of other players, the players are able to
compute their posteriors µi(· |h). The PBNE solution concept then requires that posteriors be
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obtained (based on the Bayesian machinery) by using “previous” behavior strategies.

Example 6.1. Let us go back again to the classical signaling game. Consider the extensive form
representation above. It coincides exactly with the game depicted earlier in Figure 3.3, except that
now we also include some probabilities p,q∈ [0,1] that describe player R’s posteriors. In this case,
we have p = µR(H |NE) and q = µR(H |E). For this game, we will pay attention to two (extreme)
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Figure 6.1 – Signaling Game

categories, or classes, of PBNEs that usually appear in general Sender-Receiver games which have
either with the form of a signaling situation or a cheap-talk situation.1

First, consider a situation where the Sender chooses her behavior strategy over the signals
{E,NE} in a way totally independent to the private information that she possesses. In other words,
ρS(· | tS) = ρS for both types tS = L,H. Then, the posteriors that the Receiver would compute “in a
consistent way” given such a behavior strategy of S are

p =
0.4ρS(NE)

0.4ρS(NE)+0.6ρS(NE)
= 0.4 for ρS(NE)> 0,

q =
0.4ρS(E)

0.4ρS(E)+0.6ρS(E)
= 0.4 for ρS(E)> 0.

1 Cheap-talk games are settings where one informed player sends a message to another player that must then take an
action which is payoff-relevant to both players. Unlike signaling games, cheap-talk games do not incorporate explicit
costs to the Sender from sending her messages to the Receiver. Message sending costs and other incentives are implicit
in equilibrium. The canonical cheap-talk environment was proposed and analyzed by Crawford and Sobel (1982) who
showed, among other relevant implications, that there are severe bounds to the information that can be transmitted in
equilibrium in cheap-talk situations when the conflict of interests between the players is relatively high.
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The Receiver simply retains her priors and, therefore, learn nothing new from observing the level
of education chosen by the Sender. The strategy chosen by the Sender is totally non-informative to
the Receiver. Let us know explore the optimal behavior of the Sender given such posteriors. Let us
use x = ρR(m |NE) ∈ [0,1] and y = ρR(m |E) ∈ [0,1] to parameterize R’s behavior strategies. The
expected payoffs for the Receiver, conditional on each signal, NE and E, are then given by

UR(ρ |NE) = 0.4
[
x[10]+ (1− x)[4]

]
+0.6

[
x[0]+ (1− x)[4]

]
= 4,

UR(ρ |E) = 0.4
[
y[10]+ (1− y)[4]

]
+0.6

[
y[0]+ (1− y)[4]

]
= 4.

Interestingly, such payoffs do not depend neither on x nor on y, so that any behavior strategy
is optimal for the Receiver. Given this, take x = y = 0 so that R chooses with probability one
position c upon observing any of the two education levels. Finally, it remains to check whether
the strategy initially proposed for the Sender is in fact optimal for her. To do this, let us use
w = ρS(NE |H) ∈ [0,1] and z = ρS(NE |L) ∈ [0,1] to parameterize S’s behavior strategies. The
expected payoffs for the Sender, conditional on each of her possible types, H and L, and taken as
given the optimal strategy of the Receiver, are

US(ρ |H) =
[
w[4]+ (1−w)[0]

]
= 4w,

US(ρ |L) =
[
z[4]+ (1− z)[−3]

]
=−3+7z.

Therefore, S would optimally choose w = z = 1, which corresponds to ρS(NE) = 1. Notice that the
consistent beliefs described by q are left undetermined. This is the case because the information set
that corresponds to receiving signal E is not reached under the path of the proposed equilibrium.
This does not mean that such beliefs do not exist, neither that they are not well-defined, but simply
that we need additional considerations in order to assess a particular value to such beliefs. In
other words, using the Bayesian requirement present in the PBNE notion, any beliefs q ∈ [0,1]
would work as consistent beliefs. Then, we need to re-think the optimal behavior of the Receiver
in the hypothetical event that she observed E.2 The expected payoffs to the Receiver, given any
undetermined beliefs q ∈ [0,1] are given by

UR(ρ |E) = q
[
y[10]+ (1− y)[4]

]
+(1−q)

[
y[0]+ (1− y)[4]

]
= 4+(10q−4)y.

The proposed equilibrium was supported on considering y = 0. We see that this is indeed R’s opti-

2 The Receiver is in fact never observing E under the proposed strategy of the Sender.
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mal choice if q≤ 0.4. Therefore, for values q∈ [0,0.4] of the (undetermined, under the equilibrium
path) beliefs q, we have that the proposed behavior profile is a PBNE. Qualitatively, in this class
of equilibria the Sender does nothing to provide additional information, or to separate her types.
As a consequence, the Receiver does not learn anything new further than her priors. This class of
equilibria is known as pooling equilibria.

Secondly, consider the totally opposed situation where the Sender chooses with probability one
a different signal for each different piece of private information that she possesses. Furthermore,
suppose that in particular we consider the (perhaps most in intuitive) behavior where a high-ability
Sender chooses E, whereas a low-ability Sender chooses NE. In this case, we have ρS(E |H) =

ρS(NE |L) = 1. The posteriors that the Receiver would obtain given such a behavior strategy of S

are

p =
0.4ρS(NE |H)

0.4ρS(NE |H)+0.6ρS(NE |L)
= 0,

q =
0.4ρS(E |H)

0.4ρS(E |H)+0.6ρS(E |L)
= 1.

Thus, the Receiver does actually learn the true type of the Sender by observing the level of educa-
tion chosen by theS. The strategy chosen by the Sender is now fully informative to the Receiver.
Let us know explore the optimal behavior of the Sender given such posteriors. Again, we use
x = ρR(m |NE) ∈ [0,1] and y = ρR(m |E) ∈ [0,1] to parameterize R’s behavior strategies. The
expected payoffs for the Receiver, conditional on each signal, NE and E, are then given by

UR(ρ |NE) =
[
x[0]+ (1− x)[4]

]
= 4−4x,

UR(ρ |E) =
[
y[10]+ (1− y)[4]

]
= 4+6y.

R’s optimal behavior entails x = 0 and y = 1: with probability one, she offers the clerical position
to an uneducated Sender and the managerial position to an education Sender. Finally, to do study
the Sender’s optimal behavior, use again w = ρS(NE |H) ∈ [0,1] and z = ρS(NE |L) ∈ [0,1] to
parameterize S’s behavior strategies. The expected payoffs for the Sender, conditional on each of
her possible types, H and L, and taken as given the optimal strategy of the Receiver, are now

US(ρ |H) =
[
w[4]+ (1−w)[6]

]
= 6−2w,

US(ρ |L) =
[
z[4]+ (1− z)[3]

]
= 3+ z.
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Therefore, the Receiver would optimally choose w = 0 and z = 1, which corresponds exactly with
the proposed equilibrium behavior strategy. Qualitatively, in this class of equilibria the Sender
does everything she is able to in order to provide additional information, or to separate her types.
As a consequence, the Receiver does learn the Sender’s private pieces of information. This class
of equilibria is known as (fully) separating equilibria.

As a final insight from this signaling benchmark, recall that, by studying this dynamic situation
as a Bayesian game (that is, as if both players moved simultaneously), we obtained that there
was a unique (in qualitative terms) class of BNE. In this category of equilibria, the Sender always
chose NE while the Receiver picked any randomization between m and c. We then argued that
this approach was ill-suited to explore the players’ behavior in this sequential interaction. Now,
we can fully appreciate that, by transforming the dynamic situation into a Bayesian game, we did
lose key NEs of the original extensive form game. The two—quite meaningful—classes of PBNEs
that we have now identified are some of these NEs and they could not be derived as BNE of the so
transformed game.

There is a third—intermediate, in terms of information transmission—class of equilibria that
may arise in Sender-Receiver games, known as semi-separating equilibria. In a semi-separating
equilibria the Sender typically randomizes between her available messages, the Receiver learns
something about the unknown variable, yet does not end up being fully informed. The example
represented by the game displayed in Figure 6.2 illustrates this class of equilibria.

Example 6.2. Consider an investment project that requires two partners, players 1 and 2, and
requires also two investment stages for partner 2. Think of partner 1 as an entrepreneur and of
partner 2 as a funder. Thus, player 1 needs to raise funds from player 2 to fulfill the project, and
both players benefit from the investment. The funder may have two different personalities, known
privately only by her: benevolent (b) or ordinary (o). The entrepreneur begins with respective
priors 1/4 and 3/4 about the true personality of the funder. In the first stage, the funder decides
whether to provide the initial funds for the project (I) or not (NI). If the project is not initially
funded, then the game ends with zero payoffs for both players. If the project is initially funded,
then the entrepreneur takes into account the initial willingness of the funder to participate in the
project and, accordingly, revises her priors (obtaining the posteriors p and 1− p). Then, given the
initial investment, the entrepreneur chooses whether to invest her talent and efforts in the project (I)
or not (NI). If the entrepreneur chooses not to invest, then the game ends and the (deceived) funder
collects her payoffs, depending on her personality, as shown in the figure. If the entrepreneur
chooses to invest, then the funder must decide in the final investment stage whether to ultimately
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comply with the project (C) or to act selfishly (S). If the investor does not comply with the project,
her payoffs depend again on her true personality. If the project is fulfilled, then both players
get a payoff of two. Notice that in this situation the entrepreneur is interested in assessing the
true personality of the funder in order to decide whether or not to put her part in the project.
Whether or not the funder is willing to provide the initial funds can be used here to obtain additional
information about the true nature of the funder.
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Figure 6.2 – Trust Game

We begin by using backwards induction to solve this game and, then, observe that the decisions
marked in red in the figure are optimal if the players are sequentially rational. The key to continue
solving this game lies in determining how will player 2 act in information set h. Notice that, given
her posteriors p ∈ [0,1], player 2 would optimally choose to invest if

p[2]+ (1− p)[−2]≥ 0 ⇔ p≥ 1/2.

In particular the entrepreneur would be indifferent between investing and not investing if it were
the case that she finally assigns probability 1/2 to the funder being benevolent. As to the opti-
mal behavior of the funder, conditional on each of her two possible personalities, let us use the
parameterization ρ1(I |o) = x ∈ [0,1].

Suppose first that the funder chooses “always”—following the frequentist or Laplacian inter-
pretation of probability—to invest when she is an ordinary person: x = 1. Then, we obtain the
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entrepreneur posteriors p = 3/4. This is a pooling strategy by the funder—i.e., choosing the same
strategy regardless of her private information—that leaves the entrepreneurs with posteriors that
coincide with her priors. Since 1/4 < 1/2, the entrepreneur would then optimally choose not to in-
vest. Given this, notice that, conditional on being ordinary, the funder would then receive a payoff
of −2, which is lower than the zero payoff that she would obtain instead by switching her initial
choice to not invest. Therefore, picking x = 1 is not sequentially rational for the funder.

Secondly, suppose that the funder chooses “always” to not invest when she is an ordinary per-
son: x = 0. Then, we obtain the entrepreneur posteriors p = 1. This is a fully separating strategy
by the funder—i.e., choosing different strategies for each possible different piece of her private in-
formation—that leaves the entrepreneurs with posteriors that allow her to learn the true personality
of the funder. Now, since 1 > 1/2, the entrepreneur would then optimally choose to invest. Given
this, notice though that, conditional on being ordinary, the funder would then receive a zero payoff,
which is less than the payoff of 6 that she would obtain instead by switching her initial choice to
invest. Therefore, picking x = 0 is not sequentially rational for the funder either. The first message
that we obtain is that there is no pure-strategy PBNE in this situation.

Then, we turn to explore plausible equilibria where the funder (purely) randomizes between in-
vesting and not investing when she is ordinary. Let us now use ρ2(I |h) = y ∈ [0,1] to parameterize
the entrepreneur decision at information set h. Notice that if the entrepreneur chooses y = 0, then
it would be optimal for the ordinary funder to pick I with probability one. On the other hand, if
the entrepreneur chooses y = 1, then it would be optimal for the ordinary funder to pick NI with
probability one. In other words, the funder will purely randomize between I and NI only if the en-
trepreneur herself purely randomizes between I and NI. In these case, the funder will be indifferent
between I and NI and the entrepreneur will be indifferent between I and NI. We must therefore
look for equilibria where the entrepreneur chooses y ∈ (0,1). As already pointed out, this would
be the case if and only if p = 1/2. Notice that the ordinary funder’s strategy, as parameterized x,
that leads to such posteriors must then satisfy

(1/4) ·1
(1/4) ·1+(3/4) · x

=
1
2
⇒ x =

1
3
.

Now, given this strategy for the funder, and a strategy parameterized by y ∈ (0,1) for the en-
trepreneur, the expected payoffs to the funder, conditional on being ordinary, would be given by

U1(ρ |o) = (2/3)[0]+ (1/3)
[
y[6]+ (1− y)[−2]

]
.
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Therefore, the ordinary funder would be in the first place indifferent between choosing I and NI

if and only if y = 1/4. We have thus obtained a (unique) PBNE where x∗ = 1/3, y∗ = 1/4, and
p∗ = 1/2. Prior to involving in her interaction with the funder, the entrepreneur believed that only
one fourth of the funders are benevolent and, upon observing that the funder invested initially,
concluded instead that half of the funders are benevolent. The entrepreneur learned something
about the funder’s nature, yet she did not end up being fully informed.

Example 6.3. Consider the game depicted in Figure 6.3. It displays a situation known as “burning
money,” which was originally explored by Ben-Porath and Dekel (1992). This game has multiple
PBNE, both in pure and in mixed strategies. Let us describe a couple of its pure-strategy equilibria.
We consider that player 1 chooses her pure strategies at (σ0,h,h′) and that player 2 chooses at
(σ1,σ2). Notice that in the game represented in Figure 6.3, by choosing Y instead of X , player 1
can reduce by an amount of 1 unit the payoffs that she receives for each of the action combinations
at the subgames that initiate at σ1 and σ2. Intuitively, player 1 can signal the future actions that
she will take by having the opportunity to incur looses, or to “burn money,” before playing a
simultaneous game with player 2.

1. Suppose first that player 1 chooses (X ,b,b) and that player 2 chooses (B,B). Given this,
player 1 will consistently infer the two choices by player 2. Then, player 1 will optimally
choose (b,b) at (h,h′) as 2> 1 and 1> 0, respectively. Also, given such an optimal response,
player 2 has incentives to actually choose (B,B) as 3 > 0. Finally, at σ0 will optimally
choose X , which gives her a payoff of 2, higher than the payoff of 1, which is associated
to choosing Y . Player 1’s posterior beliefs at h and h′ continue to be consistent with the
proposed behavior strategy profile. Notice that in this equilibrium, player 2 obtains her
highest possible payoff (of 3) while player 1 ensures a payoff of 2.

2. Secondly, suppose that player 1 chooses (X ,a,a) and that player 2 chooses (A,A). Given
this, player 1 will again consistently infer the two choices by player 2. Then, player 1 will
optimally choose (a,a) at (h,h′) as 3 > 0 and 2 > −1, respectively. Also, given such an
optimal response, player 2 has incentives to actually choose (A,A) as 2 > 1. Finally, at σ0

will optimally choose X , which gives her a payoff of 3, higher than the payoff of 2, which
is associated to choosing Y . Player 1’s posterior beliefs at h and h′ continue to be consistent
with the proposed behavior strategy profile. Notice that in this equilibrium, player 1 obtains
her highest possible payoff (of 3) while now player 2 gets a payoff of 2.

This game exhibits other PBNEs, some of them in mixed strategies, that we have not analyzed.
However, since player 1 moves first and she is able to anticipate that the equilibrium

(
(X ,a,a),(A,A)

)
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gives her the highest possible payoff that she can achieve, then she will choose her pure strategies
(X ,a,a) so as to induce such an equilibrium. In this way, usually known as forward induction, we
are selecting one of the two PBNEs.
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Figure 6.3 – “Money Burning” Game

6.2. Sequential Equilibrium

While dealing with the signaling environment described by Figure 3.3, we came across a situ-
ation where the consistent beliefs of a player were left undetermined. The PBNE notion does not
provide any criterion to select among such beliefs, therefore, neither to select among the corre-
sponding optimal behaviors and equilibria. The general issue that we identified by means of that
example is that some PBNE proposals may imply that some information sets are not reached along
the suggested equilibrium paths. In such cases, using the Bayesian approach to obtain beliefs is not
very useful. Motivated by this problem of undetermined posteriors, Kreps and Wilson (1982) pro-
posed a brilliant way of refining further among the set of PBNEs. In intuitive terms, their approach
consists of perturbing slightly the proposed equilibrium in a way such that each immediate succes-
sor action be achieved with positive probability under the corresponding behavior strategies. We
will deal then with a sequence of behavior profiles that approaches to the suggested PBNE behavior
strategy. Importantly, every element of the sequence is such that no beliefs are left undetermined
by using Bayes’ rule (because all information sets are reached with some positive probability in
each of the perturbed profiles in the sequence). Then, we work with the corresponding sequence
of consistent beliefs. In particular, we compute the limiting beliefs of such a sequence. Finally,
for such limiting beliefs and the corresponding limiting behavior profile (which was proposed at
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the beginning of the process), we need to check for the sequential rationality of the players. An
important feature of Kreps and Wilson (1982)’s approach is that we need to check for the optimal
behavior of the players only at the limiting behavior profile and its associated beliefs, yet not at

any of the behavior profile—belief pairs along the sequence. Specifically, a fully mixed behavior

strategy profile is a profile ρ such that ρi(a |hi) > 0 for each immediate successor a ∈ A(hi), for
each information set hi ∈Hi, and for each player i ∈ N. The equilibrium refinement proposed by
Kreps and Wilson (1982) is known as sequential equilibrium.

Definition 6.2: Sequential Equilibrium

A sequential equilibrium (SE) of an extensive form game Γ is a profile of behavior strategies
ρ∗ and a system of beliefs µ∗ that constitutes a PBNE of such a game and, in addition, such
that: (1) there is a sequence of fully mixed behavior strategy profiles {ρk} which converges
to ρ∗, and (2) the sequence of beliefs {µk}, where each µk is obtained from each ρk by
applying Bayes’ rule, converges to µ∗.

Example 6.4. To see how the computation of SE works in practice consider the extensive form
game depicted in Figure 6.4. Consider first the (pure) strategy profile ρ where the players pick

1

(2,0,0)

B T
2

U D

3

(1,2,1)

L

(3,3,3)

R

3

(0,1,2)

L

(0,1,1)

R
h

[p] [1− p]

Figure 6.4 – Computing SE

(B,U,L). Because the information set h is not reached under such a strategy combination, any
belief p ∈ [0,1] satisfies the consistency requirement imposed by the PBNE solution concept. To
check whether player 3 is being sequentially rational at h, we compute her expected payoffs at h

by using ρ3(L |h) = x ∈ [0,1] to parameterize an arbitrary behavior strategy for her. We obtain

U3(ρ |h) = p
[
x[1]+ (1− x)[3]

]
+(1− p)

[
x[2]+ (1− x)[1]

]
= (1−2p)+(1−3p)x.
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Therefore, choosing L with probability one (x = 1) is optimal for player 3 if she assigns sufficiently
low probability, p∈ [0,1/3], to player 2 having chosen action U . Conditional on player 3 playing L

is then optimal for player 2 to pick U since this gives her a payoff of 2 which exceeds the payoff of
1 that she would obtain by deviating to D. As for player 1, conditional on players 2 and 3 choosing
(U,L), then it is optimal for her to choose B. By doing so, player 1 obtains a payoff of 2 which
exceeds the payoff of 1 that she would obtain by deviating to T . Therefore, for any induced belief
p ∈ [0,1] of player 3, (B,U,L) is a PBNE of this game.

Nonetheless, there exists another (pure) strategy profile ρ ′ that constitutes a PBNE of this game
as well. Suppose now that the players choose (T,U,R) instead, as indicated in blue in the figure.
Now p = 1 gives us the unique belief that satisfies the consistency requirement of the PBNE
notion. For such a posterior, it follows form the above derived expression for player 3’s expected
payoff that choosing R with probability one (x = 0) is her unique sequentially rational decision.
Conditional on this, it is now easy to check that players 2 and 3, respectively, have strict incentives
to play U and T , as prescribed by the proposed strategy profile. Furthermore, we can verify that
this strategy profile (T,U,R) is indeed the unique SE of this extensive form game. To see this, let
us parameterize the behavior strategies of players 1 and 2, respectively, as ρ1(T |σ0) = y ∈ [0,1]
and ρ2(U |(σ0,T )) = z ∈ [0,1]. Then, the consistent posteriors of player 3 are obtained as

p =
yz

yz+ y(1− z)
= z

as long as y > 0. As required by the definition of SE, we now need to consider sequences {yk} and
{zk} of fully mixed behavior strategies that converge, respectively, to y = 1 and z = 1. Note that to
work with fully mixed behavior strategies, we need to consider yk > 0 and zk > 0 for each term k

along the sequence. Then, it is clear that the corresponding sequence of posteriors {pk} for player
3 satisfies pk = zk. Notice that any sequences {yk} → 1 and {zk} → 1, that satisfy yk,zk > 0 for
each k, would be suitable to obtain the desired sequence of posteriors {pk}→ 1.

On the other hand, we observe that there is no way of proposing sequences of behavior strategies
{yk}→ 0 and {zk}→ 1, with yk,zk > 0 for each k, such that {pk}≡ {zk} converges to a belief lower
than 1/3. Therefore, while (B,U,L) is a PBNE of this extensive form game, it does not constitute
a SE. In this example the SE criterion has allowed us to narrow down the set {(B,U,L),(T,U,R)}
of plausible NEs, and thereby to conclude that the most appealing prediction here is given by
(T,U,R).
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6.3. The “Global Games” Approach
The global games approach can be seen as a particular equilibrium selection criterion through

“perturbations.” In particular, the proposed perturbations here affect what the players privately
know about some unknown “historical” move by Nature. As already described, Harsanyi (1967-
68) provided a unified framework to analyze situations where the players’ payoffs depend on the
realization of some move of Nature, typically termed also as unknown fundamental or state of

the world. In such classical Bayesian Games environments, the players’ optimal choices not only
depend on their beliefs of the state of the world but also on their beliefs of others’ beliefs about
the state of world, of their beliefs about others’ beliefs about everyone else’s beliefs about the state
of the world, and so on. Such higher-order beliefs are, however, very complex to compute by the
players and by the analyst herself that explores such strategic settings with extrinsic uncertainty.
Therefore, it would be interesting to identify environments where arbitrarily higher-order beliefs
about some unknown parameter play an important role in the individuals’ decisions, yet that allow
for a systematic and tractable analysis. The global games approach, first proposed by Carlsson and
van Damme (1993) enables such a desirable treatment. Consider a game with extrinsic uncertainty
where the move of Nature is captured by a state of the world θ . For this Bayesian game, the global
games approach consists of assuming that the private information, signal, or type, that each player
receives about the state θ has some “small” amount of noise. The joint distribution of the noises
that affect the players’ signals—or noise technology—is assumed to be commonly known among
the players. The trick that allows for a tractable approach to how players compute arbitrarily
higher-order beliefs about θ is considering that they are smart Laplacian statisticians that correctly
interpreted probabilities following their frequentist interpretation. The global games approach
is appealing when one considers that there is a very large number of (ex-ante identical) players
involved in the game of interest. In such cases, when hypothesizing the higher-order beliefs of the
players about θ , each player only needs to draw inferences about the proportion of other players
that are choosing each particular choice among the available choices. This approach can be seen,
therefore, as a “short-cut” that allows the game theorist for a systematic approach to situations that
may otherwise appear to be intractable. At a more fundamental level, the classical assumptions
underlying the NE notion that (i) the players have common knowledge about the entire situation
in which they interact and (ii) that beliefs about other players’ decisions are consistent with their
actual optimal choices invite for the presence of multiple equilibria. Through the heuristic device
incorporated into the analysis by the Laplacian view of the the players, the global games approach
allows to identify which set of self-fulling beliefs will prevail in equilibrium and, therefore, to
select among the set of NEs in a practical way.
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Example 6.5. To illustrate the rationale behind the global games approach, consider the game
depicted in Figure 6.5, with θ ∈ R , which was originally proposed by Carlsson and van Damme
(1993). In this situation the two players must decide whether to Invest (I) or Not Invest (NI) in a

1

2
I NI

I θ ,θ θ −1,0

NI 0,θ −1 0,0

Figure 6.5 – Investment Game under Extrinsic Uncertainty

risky project. We observe that the investment activity entails complementarities, that is, the return
to each player from investing is higher if the other player also invests.

Suppose first that there is in fact no extrinsic uncertainty and the players have complete infor-
mation about the state of the world θ ∈R. In this case, we can distinguish three possible outcomes:

1. If θ > 1, then I is a (strictly) dominant strategy for each player.

2. If θ ∈ [0,1], then there are two pure-strategy NEs: either both players choose I or both
players choose NI.

3. If θ < 0, then NI is a (strictly) dominant strategy for each player.

The most interesting situation, however, is the Bayesian game that we obtain when the players
are instead uncertain about the value of θ . Consider a situation where θ is randomly drawn from
the real line. That is, θ ∼ U [θ ,θ ], where θ → −∞ and θ → +∞.3 Suppose that each player i

observes a private signal (or type) ti = θ + εi. Suppose further that each noise term εi is inde-
pendently normally distributed with mean zero and standard deviation σ : εi ∼ N(0,σ2) for each
i = 1,2. Given such distributional assumptions on θ and each εi, we know that the (conditional
on one’s own signal or type) beliefs about the state and about the other player’s signal realization
(or type) are given, respectively, as (θ | ti) ∼ N(ti |σ2) and (t j | ti) ∼ N(ti |2σ2). This conditional
distributions describe the beliefs of any player i about, respectively, the state of the world and the
private information that the other player has.

Let consider now the following (pure) strategy for each player i: for some real number, or “cut-
off” point k, take βi(I | ti) = 1 if ti > k and βi(NI | ti) = 1 if ti ≤ k. Thus, this strategy prescribes the

3 This is a non-standard distributional assumption that nevertheless poses no technical difficulties.
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player to Invest (with probability one) if the value of her type exceeds a certain value k and Not
Invest (again, with probability one) if the value of her type does not exceed the value k. This kind
of “switching” strategy seems quite natural in this context: the player chooses to invest whenever
she receives a signal pointing out that the value of the state is sufficiently high, which turns out very
intuitive given the payoffs of the players. Suppose now that each player thinks that her opponent
is in fact following this “switching” strategy around the cutoff point k. Let F(·) denote the (cu-
mulative) distribution function of the standard normal distribution. Then, notice that each player i

will assign probability F
(

1
/√

2σ(k− t j)
)

to her opponent j observing a signal t j less than k. In
particular, given the cutoff point k = t j for the proposed strategies, each player i will assign prob-
ability 1/2 to her opponent investing. As a consequence, there will be an equilibrium where both
players follow the suggested switching strategies with cutoff value k∗ = 1/2. Furthermore, some
analytical arguments—perhaps beyond the scope of these notes—can be used to show that this is
in fact the only strategy that survives the iterated elimination of strictly dominated strategies, at the
stage where is player knows her own type.

Consider now the following many-player analog of this game. Suppose that a continuum of
players is deciding now whether to invest. The payoff from not investing is zero. The payoff from
investing to each player is θ − 1+ ρ , where ρ is the proportion of other players that choose to
invest. The information structure is exactly the same as in the two-player version. For this version
of the investment game, switching strategies with cutoff value k∗ = 1/2 are also the only equilib-
rium that survives iteration elimination of strictly dominated strategies. Importantly, to achieve
this equilibrium, each player i needs to keep track of an infinitely iterated layer of beliefs about
whether each of the other players j is observing a signal t j higher than k∗ = 1/2. Nonetheless, the
beautiful trick that underlies the global games approach allows us to circumvent, in a fully con-
sistent and systematic way, such a complex higher-order belief computation process. In particular,
the suggested short-cut requires instead each player i to make the following, far less demanding,
computations:

1. Estimate θ by using her signal realization ti.

2. Postulate that ρ is uniformly distributed on the interval [0,1].

3. Take her optimal action.

Recall that the estimation that the player makes about θ given her type is just the type itself:
(θ | ti)∼N(ti |σ2) so that E[θ | ti] = ti. Therefore, if we consider that ρ ∼U [0,1], then the expected
payoff from investing is ti− 1/2. On the other hand, the expected payoff from not investing is
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zero. Thus, following the procedure above, player i would invest if ti ≥ 1/2, which coincides
with the equilibrium obtained earlier. Postulating that ρ is uniformly distributed captures the idea
that the player has not any precise information that leads her to hold some specific beliefs about
the proportion of other players that invest. Then, the player considers that such a proportion is
completely random, which represent a type of “diffuse” or “agnostic” beliefs on others’ actions.4

For such “uninformed inferences,” the player then is assumed to act as a Laplacian statistician that
considers that at least a proportion ρ of other players is investing whenever she receives a signal
ti ≥ ρ . The messages conveyed by the example presented here can be extended generally to a wide
class of binary choice games.5

4 More formally, the fact that taking a uniform distribution for ρ is an appropriate choice is fundamentaly linked to
the implication that the the transformation of any random variable according to its (cumulative) distribution function
is uniformly distributed.

5 Morris and Shin (2003) provide the required arguments in their comprehensive view of the theory and applications
of the global games approach.
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7. Repeated Games

In many environments, some interactions do not occur just once and forever but players face them
repeatedly: firms, couples, professionals, institutions, or countries are involved in the same strate-
gic settings over time, where they receive the same possible outcomes and have the same pref-
erences over such outcomes in each period. The strand of the literature on repeated games in-
vestigates situations where individuals interact repeatedly, by making crucial assumptions on who
interacts with whom and on the information that permeates—either privately or publicly—from
each round of interaction to the subsequent ones. By analyzing formally repeated interactions,
important issues of dynamic behavior can be explored, such as the relationship between reputation
and long-term stable outcomes, career building concerns, the design of institutions, or the rise of
stable social norms. The term “reputation” is commonly used to describe how a player’s past be-
havior affects what others believe about her and, therefore, how others behave in the future with
respect to such a player. The theory allows us to interpret long-term stable interactions as “social
norms,” which capture how individuals reward or punish others that do not follow the behavior
prescribed by the norms. The literature on repeated games typically takes on two approaches: (1)
exploring the structure of the equilibrium strategies, and (2) describing the set of payoffs that can
be sustained in equilibria. The first approach allows us to analyze explicitly how incentives affect
reputation, shapes social norms, and determines long-term behavior. The second approach tells
us about the welfare levels that can be ensured to the players in repeated interactions. At an in-
strumental level, SPE and PBNE/SE are the solution concepts typically used to predict behavior in
repeated games.

A repeated game is a strategic situation where a particular—usually, simultaneous or “one-
shot”—game is played several times under the assumption that the primitives of such a game
do not change over time. Formally, a repeated game is a sequence of repetitions of some stage

game. For simplicity, we will consider that a stage game is a strategic form game with no extrinsic
uncertainty Γ =< N,A,(υi)i∈N >, where A =×i∈NAi, and υi : A→R for each i∈N.1 We consider

1 When considering repetitions of a stage game, it is notationally quite convenient to identify each pure strategy of



that the stage game Γ is played repeatedly over a discrete sequence of periods t = 0,1,2, ...,T ,
where T could tend to infinite. Given this, we can then capture this repeated situation by means of
a “multiple-shot” extensive form game ΓR, which gives us the repeated game associated with the
stage game Γ .

For each period t = 0,1,2, ...,T , we will use at = (at
1, . . . ,a

t
n) ∈ A to denote an action profile

chosen by the players at period t. In these notes, we restrict attention to repeated games with
perfect monitoring: at the end of each period t, all players observe (or “learn”) the action profile
chosen at . In other words, the actions of each player are perfectly monitored by all other players.
The set of histories Σ of the repeated game ΓR can then be specified as follows.

1. Use σ0 to denote the initial history or root of the tree that gives the extensive form game ΓR.
Then, at t=0, the players choose an action profile a0 ∈ A.

2. At t = 1, for each history σ1 = (σ0,a0) ∈ A, the players choose an action profile a1 ∈ A.

3. In general, at each t = 0,1,2, . . . ,T , upon each history σ t = (σ0,a0, . . . ,at−1) ∈ At , the play-
ers choose an action profile at ∈ A.

Hence, for t > 0, a t−period history of the extensive form game ΓR that describes the repeated game
(associated to our stage game Γ ) is a history with the form σ t = (σ0,a0,a1, . . . ,at−1) ∈ Σ t ≡ At ,
where Σ t is the set of possible histories at t. For t = 0, we simply set Σ 0 ≡ {σ0}. The tree
associated to the extensive form game is therefore formally given as Σ ≡

⋃T
t=0 Σ t . A repeated

game ΓR is finite is T is finite and infinite if T → ∞.

A pure strategy for player i in the repeated game ΓR is then a mapping si : Σ → Ai. Also, a
behavior strategy for player i in the repeated game ΓR is a mapping ρi : Σ → ∆(Ai). As usual, we
will use s = (s1, . . . ,sn) and ρ = (ρ1, . . . ,ρn) to denote strategy profiles for the repeated game ΓR.

In dynamic situations, it is natural to assume that individuals do not regard equally a certain
payoff obtained in the present than the same payoff received in a future period. In particular, the
theory usually considers that players have some degree of “impatience” and that they discount
future payoffs following an exponential pattern. In particular, we will consider a discount factor
δ ∈ [0,1] and then

ui(s) =
T

∑
t=0

δ
t
υi(at)

the stage game with its corresponding action ai ∈ Ai. Other than the change of labels from “s”s to “a”s, this does not
actually imply neither a conceptual change nor even a change in notation since actions do coincide with pure strategies
in strategic form games.
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will account for the aggregate payoffs that the player receives when T < ∞. For T → ∞, the
aggregate payoffs are instead typically normalized as the average discounted payoff 2

ui(s) = (1−δ )
∞

∑
t=0

δ
t
υi(at).

Example 7.1. To fix ideas about the concepts introduced thus far, consider that two players interact
according to a prisoner’s dilemma stage game whose payoffs are depicted in Figure 7.1. Suppose

1

2
C D

C 3,3 0,4
D 4,0 1,1

Figure 7.1 – Prisoner’s Dilemma Stage Game

that the players repeat their interaction twice, t = 0,1, and that they are not impatient, δ = 1. For
instance, if they play (C,C) in the first period and (C,D) in the second period, then they obtain a
payoff profile (3+0,3+4) = (3,7). Then, we can derive the extensive form game ΓR is this two-
period repeated game with payoffs as shown in Figure 7.2. The red diagram includes the players’
moves at t = 0 whereas the blue diagram includes the players’ moves at t = 1.

Furthermore, we can plot the set of attainable payoffs for this two-period repeated situation
where δ = 1 as shown in Figure 7.3.

Some additional—more technical—elements are sometimes useful to explore equilibria in re-
peated games. Given a history σ t , with t < T , the continuation game from σ t is the repeated game
ΓR|σ t that begins following history σ t . Let us consider the concatenation of history σ t followed by
the sequence of action profiles σ τ = (at+1,at+2, . . . ,aT ). Also, let me set σ tσ τ as the shorthand
notation for the string (σ t ,σ τ). Then, given a strategy profile s ∈ S≡ AT of the repeated game, the
continuation strategy induced by history σ t , for t < T , is the strategy si|σ t (σ τ) specified as

si|σ t (σ τ)≡ si(σ
t
σ

τ).

Then, let us use s|σ t ≡ (s1|σ t , . . . ,sn|σ t ) to denote a continuation strategy profile induced by history

σ t . For t < T , we will analogously use the notation

ρi|σ t (σ τ)≡ ρi(σ
t
σ

τ),

2 The specific reason for using the average discounted payoff for infinite horizon repeated games is that if the player
obtains a constant payoff across periods, that is, υi(at) = ῡ for each t = 0,1, . . . , then ui(s) = (1−δ )∑

∞
t=0 δ t ῡ = ῡ .
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Figure 7.2 – Two-Period Repeated Prisoner’s Dilemma Game

to indicate the continuation behavior strategy induced by history σ t and ρ|σ t ≡ (ρ1|σ t , . . . ,ρn|σ t )

to denote a behavior continuation strategy profile induced by history σ t . Intuitively, si|σ t and ρi|σ t

are just the restrictions of strategies si and ρi, respectively, to the subgames that follow history
σ t . To illustrate how continuation strategies work, consider again the two-period repeated game
depicted in Figure 7.3. Suppose that player 1 chooses a (pure) strategy s1 specified as:

s1(σ
0) =C; s1(σ

0,CC) =C; s1(σ
0,CD) = D; s1(σ

0,DC) = D; s1(σ
0,DD) =C.

Such a strategy is indicated in blue in Figure 7.4. Also, suppose that player 2 chooses a (pure)
strategy s2 specified as:

s2(σ
0) = D; s2(σ

0,CC) = D; s2(σ
0,CD) = D; s2(σ

0,DC) =C; s2(σ
0,DD) =C.

Such a strategy is indicated in red in Figure 7.4. Notice that the proposed strategy combina-
tion s = (s1,s2) gives us an “action path,” which is depicted by arrows in the figure. The final
payoffs achieved under such a strategy profile are (1,5). Let us now fix the particular history
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(8,0)
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Figure 7.3 – Attainable Payoffs for the Two-Period Prisoner’s Dilemma Repeated Game

σ̄1 = (σ0,CD) ∈ Σ 1. Then, for the suggested strategy profile we have the continuation strate-
gies3 s1|σ̄1(σ̄1) = D and s2|σ̄1(σ̄1) = D, so that s|σ̄1(σ̄1) = DD. On the other hand, if we take
another particular history such as σ̃1 = (σ0,DD) ∈ Σ 1, then we have the continuation strategies
s1|σ̃1(σ̃1) =C and s2|σ̃1(σ̃1) =C, so that s|σ̃1(σ̃1) =CC.

Because of the description of how players move sequentially in a repeated game with perfect
monitoring, rather than using NE, the most appealing solution notion here is SPE.

Definition 7.1

A behavior strategy profile ρ∗ is a SPE of a repeated game ΓR, with perfect monitoring, if
for each history σ t ∈ Σ , the continuation strategy profile ρ∗|σ t is a NE of the repeated game.

The definition above simply says that the a SPE is a strategy profile that induces a NE in each
subgame of the extensive form game associated to the repeated game. This coincides with our
previous general definition of SPE.

Although it gives us a very appealing solution notion, computing SPE by following directly its
definition raises potentially formidable technical difficulties. Notice that checking for subgame
perfection entails in principle verifying whether a very large number—in fact, an infinite number
for infinite repeated games—of strategy profiles are NEs. Added to this, checking whether a profile
ρ|σ t is a NE involves checking that each player i’s strategy ρi|σ t makes her no worse off than under

3 Notice that, in this case, any concatenation (σ t ,σ τ) specified in the definition of a continuation strategy must
have the form σ t since any σ1 ∈ Σ 1 is the last history at which the players make decisions in this example where
T = 1.
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Figure 7.4 – Two-Period Repeated Prisoner’s Dilemma Game: Checking for Equilibria

a very large—even infinite—number of potential deviations. To illustrate these difficulties, let us
go back to the example in Figure 7.4 and to the particular strategy profile suggested in the picture.
If we were to follow the definition of SPE to check whether or not the proposed strategy profile
is a SPE, then we would have to verify separately whether there are profitable deviations for both
player 1 and player 2 at the five histories σ0, σ1

a , σ1
b , σ1

c , and σ1
d . This total of 10 verifications

is what it would take us to check for equilibria in a two-player, two-period, two-action repeated
game, which in fact leave us with the simplest example we might consider.

This potentially unmanageable task in general repeated games can be simplified enormously
by applying a principle borrowed from dynamic programming which is commonly known as the
one-shot deviation principle. In particular, the one-shot deviation principle works as follows. First,
fix a strategy profile ρ , which we wish to check whether it constitutes an equilibrium. Then, we
define a one-shot profitable deviation for player i—with respect to ρi—as a strategy ρ ′i 6= ρi such
that the following two conditions are satisfied:

1. There is a single history σ t̃ ∈ Σ (that is, for some σ t̃ ∈ Σ t̃ , for some t̃ ∈ {0,1, . . . ,T}) such
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that for each σ t 6= σ t̃ , we have ρ ′i (σ
t) = ρi(σ

t).

2. Given the continuation game ΓR|σ t̃ , we have ui
(
ρ ′i |σ t̃ ,ρ−i|σ t̃

)
> ui

(
ρ|

σ t̃

)
.

Condition 1 above simply says that there is exactly only one history at which ρ ′i differs from ρi.
Given this, condition 2 then requires that, conditional on reaching history σ t̃ by means of the
proposed strategy profile, player i is strictly better by deviating than by following the prescribed
strategy ρi. We thus need to consider alternatives that deviate from the suggested profile once
and then return to the prescriptions of the suggested profile. This does not imply that the path
of generated actions will differ form the equilibrium strategies in only one period. The one-shot
profitable deviation (if it exists) leads to a different history than it does in the suggested profile,
and then the equilibrium strategies may respond at this history by making different prescriptions.

Proposition 7.1: One-Shot Deviation Principle

A strategy profile ρ∗ is a SPE of the repeated game ΓR if and only if there are no one-shot
profitable deviations.

The relevance of the one-shot deviation principle lies in the allowed reduction of the space of
deviations that we need to check for. In particular, one does not need to worry about alternative
strategies that might deviate from the equilibrium in period t, and then again in period t ′ > t, and
again in period t ′′ > t ′.

Example 7.2. To illustrate this point, let us go back to the example displayed in Figure 7.4. Here
we can conclude that the suggested strategy profile does not constitute a SPE simply because if
player 2 deviates in history σ0 from defaulting to cooperating, then she gets a payoff of 7, which
exceeds the induced payoff of 5. Of course, we can find more profitable one-shot deviations. Now,
suppose that the number of periods T < ∞ is instead arbitrary and that the players follow a (pure)
strategy combination such that s1(σ

t) = s2(σ
t) = D for each σ t ∈ Σ t , for each t = 0,1, . . . ,T .

Then, for T < ∞, we have that each player is obtaining a payoff of

1 ·
T

∑
t=0

δ
t =

1−δ T

1−δ

under the prescribed strategy. Now suppose that one of the two players deviates only at some
history σ t̃ for some period t̃ by choosing C instead and continues to choose D in each other history.
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Then, such a player would receive instead a payoff of

1 ·
t̃−1

∑
t=0

δ
t +0 ·δ t̃ +1 ·

T

∑
t=t̃+1

δ
t =

1−δ t̃−1

1−δ
+

δ t̃+1−δ T

1−δ
=

1−δ T

1−δ
−

(
δ t̃

1−δ

)
.

Since, for δ ∈ (0,1], we have δ t̃/(1−δ ) > 0, it follows that there are not one-shot profitable
deviations and, therefore, that always defaulting is a SPE.

Finally, notice that this logic behind the non-existence of one-shot profitable deviations from
always defaulting does not go through when the repeated interaction is infinite instead. Intuitively,
this is the case because the loss from deviating to C in a single history vanishes as T → ∞. In
general, the loss from deviating to cooperate in a finite number of histories becomes negligible in
infinitely repeated games. This argument will be crucial to obtain equilibria where the players may
cooperate for the infinitely repeated prisoner’s dilemma stage game. Furthermore, the one-shot
deviation principle can be carefully used to obtain that always defaulting is the unique SPE of the
finitely repeated prisoner’s dilemma game.

Importantly, the one-shot deviation principle leads directly to the following useful result for the
interesting class of strategy profiles that prescribe the same actions at all the histories available at
the same period. Formally, we say that a strategy profile is history-independent if ρ(σ t) = ρ(σ̃ t)

for each σ t , σ̃ t ∈ Σ t , for each t ≥ 0.

Proposition 7.2

A history-independent strategy profile ρ∗ is a SPE of the repeated game ΓR if and only if for
each t and each σ t ∈ Σ t , ρ∗(σ t) is a NE of the stage game Γ .

To prove the “if” part note that since each ρ∗(σ t) is a NE of the stage game, then there is
no profitable one-shot deviation. Thus, by the one-shot deviation principle, there is no profitable
deviation in the extensive form game associated to the repeated interaction. As to the “only if”
part, suppose that ρ∗ is a SPE of the repeated game and that some ρ∗(σ t) is not a NE of the stage
game. Then, there must exist a profitable deviation for some player i in which she deviates from
ρ∗i at σ t but otherwise plays just as prescribed by ρ∗i . Because the rest of the players are playing
strategies that do not vary with the particular histories available in each period, this must be a
profitable deviation in the subgame that initiates at history σ t . This, in turn, contradicts that ρ∗ is
a SPE of the repeated game.

Therefore, NEs of the stage game are never ruled out when the players play it repeatedly. This
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result shows that equilibria are not refined by considering repeated interactions. On the contrary,
the set equilibria is in general enlarged. In particular, for the case of infinitely repeated games,
this enlargement takes the extreme form—not desirable when the analysis seeks to predict behav-
ior—of “everything goes” implications showed by “folk” theorems.

7.1. Finite versus Infinitely Repeated Games

What repeated interactions can offer, both in terms of equilibria structure and of the set of
achievable payoffs, depends crucially on whether the interactions are finite in time or go on forever
with no particular end date. Although real-world players do not actually live for ever, one appealing
justification for assuming that a repeated game is infinite is that, in many cases, players may in
practice not envision any ending date when they make their choices. For finitely repeated games, if
the stage game has a unique NE, then such a NE gives us the only equilibrium behavior that persists
in the long run. The argument behind this result makes use of generalized backwards induction.

Proposition 7.3

Suppose that T < ∞ and that the stage game Γ has a unique (possibly in mixed strategies)
NE β ∗. Then, the unique SPE of the repeated game ΓR is the strategy profile ρ∗ such that
for each t and each σ t ∈ Σ t , we have ρ∗(σ t) = β ∗.

Since the unique NE of a prisoner’s dilemma stage game is the socially inefficient (D,D) out-
come, the result above tells us that a finitely repeated prisoner’s dilemma will not be to attain the
efficient (C,C) outcome Things can go differently, though, if the stage game has more than one
NE, as the following example illustrates.

Example 7.3. Consider the game depicted in Figure 7.5. This game adds moves to a prisoner’s
dilemma. In particular, if we were to consider a game where each player can only choose between
actions A and B, we would have exactly a prisoner’s dilemma situation. However, we are now
modifying the prisoner’s dilemma by allowing the players to choose action C as well. This ad-
ditional action allows for incentives that can be useful if the game is played repeatedly through a
finite number of periods. We observe that this stage game has more than one NE so that we are
avoiding the implication of the proposition above for the case of finitely repeated games.

Suppose that this game is played repeatedly over two periods, t = 0,1. Players discount their
future payoffs according to a discount parameter δ ∈ (0,1).

First, we observe that the choices either ((B,B),(B,C)) or ((B,B),(C,B)) are SPEs of the two-
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1

2
A B C

A 6,6 2,7 −5,9
B 7,2 5,5 1,1
C 9,−5 1,1 −1,−1

Figure 7.5 – Payoffs of Modified Prisoner’s Dilemma Game

period repeated game. Each player gets a discounted payoff of 5+ δ with such choices. Then, if
any of the two players deviates at t = 0, all she can achieve is a payoff of either 2+ δ or 1+ δ .
Also, if any player deviates at t = 1, then all she can achieve is a payoff of either 5−5δ or 5−δ .
Therefore, using the one-shot deviation principle, we observe that there are no incentives to deviate
and that any of these two profiles either ((B,B),(B,C)) or ((B,B),(C,B)) constitutes a SPE.

Interestingly, if δ is sufficiently high, then we can obtain another SPE of the two-period repeated
game in which the profile (A,A) is played at t = 0. This can be achieved upon the suggested
combination of strategies:

1. At t = 0, the players choose (A,A).

2. At t = 1: (a) if the opponent behaved at t = 0 as prescribed above, then both players choose
B; (b) if the opponent did not behave at t = 0 as prescribed above, then the player who has
behaved as prescribed penalizes the other player by moving C.

We observe that, if no player deviates from the proposed combination of strategies, then each
player gets a discounted payoff of 6+5δ . Furthermore, the only deviation that could be profitable
for a player is to move either B or C at t = 0. By doing so, the deviating player, would get a
discounted payoff that does not exceed a 9+δ . Therefore, such a deviation would not be beneficial
for the player if

9+δ ≤ 6+5δ ⇔ δ ≥ 3/4.

As a consequence, if δ ≥ δ ≡ 3/4, then the proposed combination of strategies does constitute a
SPE of the two-period repeated game.

As already indicated earlier in the prisoner’s dilemma example, infinite repetitions can allow
from much broader sets of equilibria, relative to the case of finitely repeated games. The inter-
esting implication of the theory here is therefore that it allows to rationalize long-term behavior
features, strongly based on social norms and on the role of reputation, which cannot be otherwise
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sustained (neither in one-shot interactions nor in finitely repeated interactions). The drawback
of the analysis of infinitely repeated games, though, is that the set of equilibria—and, more im-
portantly, of attainable equilibrium payoffs as well—becomes potentially so large that the predic-
tive/explanatory power of the theory gets critically compromised. These messages, both with their
positive and negative implications, can be summarized by the so called “folk” theorems of repeated
game theory.

7.2. “Folk” Theorems

Example 7.4. To fix ideas, let us go back again to the prisoner’s dilemma game depicted in Fig-
ure 7.1. Suppose that δ ∈ (0,1) and that this stage game is played during an infinite number of
periods, T → ∞. We turn to explore plausible long-term equilibrium behavior for this situation
where, in intuitive terms, the players do not envision an ending for their sequence of future inter-
actions.

Consider first the (pure) strategy profile where the recommendation for each player is verbally
described as: (1) play C in t = 0, and (2) in any subsequent period t ≥ 1, play C if the corre-
sponding history is such that no player has played D in the past, and play D otherwise. This sort
of strategy is commonly known as a grim-trigger strategy. To explore whether this grim-trigger
strategy corresponds to a SPE of the infinitely repeated game, we only need to check whether there
exists one-shot profitable deviations from it. The simple structure of the proposed profile turns out
helpful to perform this verification task. Note first that there is no profitable one-shot deviation at
any history where D has played by some player in the past (i.e., either CD, DC, or DD has been
played at least once in the past). This is the case simply because such a one-shot deviation only
reduces the player’s current period payoff while it does not affect her future payoffs. Therefore,
we only need to pay attention to one-shot deviations at histories where CC has always been played
in the past. Without loss of generality, we can consider a one-shot deviation for player 1 to playing
D in period t = 0. By doing so, player 1 “triggers” a perpetual (mutual) punishment from CC to
(DC,DD,DD, . . .). As a consequence, this one-shot deviation is profitable if and only if

3≥ (1−δ )

[
4+1 · δ

1−δ

]
⇔ δ ≥ 1

3
.

Quite interestingly, if the players are sufficiently patient, then we obtain SPE of the repeated game
where mutual cooperation is sustained in all periods. The (average discounted) payoffs attained
under this equilibrium are (3,3).
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Consider now another (pure) strategy profile where the prescription for each player is verbally
described as: (1) play C in t = 0, and (2) in any subsequent period t ≥ 1, play whatever the
opponent has played in the previous period. This sort of strategy is commonly known as a tit-for-

tat strategy. Given the symmetry of the proposed profile, we can focus, without loss of generality,
on possible one-shot profitable deviations for player 1. Notice that whether or not a one-shot
deviation is profitable at some history σ t depends only on the action profile played in the previous
period t−1. In short, what happens in periods 0,1, . . . , t−3, t−2 is irrelevant. Let us then study
the four possibilities at−1 =CC, at−1 =CD, at−1 = DC, and at−1 = DD.

For at−1 = CC, we have that not deviating from C at σ t leads to CC in each period along the
path of play. On the other hand, deviation to D by player 1 leads to DC,CD,DC,CD, . . . , so that
the required condition for the one-shot deviation to be not profitable is

3≥ (1−δ )[4+δ (0)+δ
2(4)+δ

3(0)+δ
4(4)+ . . . ] = (1−δ )

4
1−δ 2 ⇔ δ ≥ 1

3
.

For at−1 = CD, not deviating from C at σ t leads to DC,CD,DC,CD, . . . in each period along the
path of play. On the other hand, deviation to D by player 1 leads to CC,CC,CC,CC, . . . , so that the
required condition for the one-shot deviation to be not profitable is

(1−δ )
4

1−δ 2 ≥ 3 ⇔ δ ≤ 1
3
.

For at−1 = DC, not deviating from D at σ t leads to CD,DC,CD,DC, . . . in each period along the
path of play. On the other hand, deviation to D by player 1 leads to DD,DD,DD,DD, . . . , so that
the required condition for the one-shot deviation to be not profitable is

(1−δ )
4δ

1−δ 2 ≥ 1 ⇔ δ ≥ 1
3
.

Finally, for at−1 = DD, not deviating from D at σ t leads to DD,DD,DD,DD, . . . in each period
along the path of play. On the other hand, deviation to C by player 1 leads to CD,DC,CD,DC, . . . ,
so that the required condition for the one-shot deviation to be not profitable is

1≥ (1−δ )
4δ

1−δ 2 ⇔ δ ≤ 1
3
.

Obviously, there is one (and only one) value for δ that satisfies simultaneously the two require-
ments δ ≥ 1/3 and δ ≤ 1/3: for δ = 1/3, the mutual tit-for-tat profile is a SPE of the infinitely
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repeated prisoner’s dilemma game. Interestingly, any payoff combination in the convex hull of the
set of payoffs (1,1), (1,3), (3,1), and (3,3) can be achieved. Geometrically, this tit-for-tat SPE
allows the players to attain the payoffs in the area depicted in the graph below.

u1

u2

(3,3)

(1,1)

(1,3)

(3,1)

(0,4)

(4,0)

Figure 7.6 – Attainable Payoffs for the Infinite Prisoner’s Dilemma Repeated Game under
Tit-for-Tat

The analyses carried out in Example 7.4 raise the natural question of what are the payoff profiles
that can be attained by a SPE of an infinitely repeated game. As already mentioned, there is a
number of “folk” theorems in the repeated games literature that provide answers. Suppose that
ϒ̃ =

{(
υ1(a), . . . ,υn(a)

)
: a ∈ A

}
is the set of all payoff combinations that are attained by some

action profile a ∈ A of the stage game. The set of feasible payoffs is then given by the convex hull
of the set ϒ̃ , which is commonly denoted as ϒ ≡ co(ϒ̃ ). For instance, the convex hull of the set of
payoffs attainable in our prisoner’s dilemma stage game is as depicted below.

It is intuitive that no payoff combination outside the set of attainable payoffs ϒ̃ can be achieved
as an average discounted payoff of a SPE of the repeated game. However, the “folk” theorems
show that as δ → 1 any payoff in the convex hull co(ϒ̃ ) can be obtained as an average discounted
payoff by some SPE of the repeated game. In addition to the players being sufficiently patient,
these “every goes” results require that the players optimally choose appropriate sequences of action
profiles which might change as time evolves.

A couple of definitions are required to state two important “folk” theorems.
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u1

u2

(3,3)

(1,1)

(1,3)

(3,1)

(0,4)

(4,0)

Figure 7.7 – Convex Hull of Attainable Payoffs for the Infinite Prisoner’s Dilemma Repeated
Game

Definition 7.2: Nash-Threat Payoff

The Nash-threat payoff for player i is the payoff υ i specified as

υ i ≡ inf{υi : there exists a stage game NE strategy β
∗ such that υi(β

∗) = υi} .

The Nash-threat payoff can be interpreted as a punishment payoff that the players would impose
on a given player if she deviates from some prescribed long-run strategy. This gives us formally a
threat to those that do not comply to some (equilibrium) pre-established “social norm.” The repu-
tations of the players that deviate from the “agreed” social norm will be damaged and, therefore,
they will receive a punishment by the society. It is intuitive that the players can always inflict a
punishment to deviators where they allow them at most the payoff of the less beneficial NE in the
stage game. All they need to do is specify in the long-run strategy a punishment where they resort
forever to their best replies of the NE that yields the lowest payoff to a deviator. Since it is a NE,
any deviator i will have to best reply (to the punishment) as well and, therefore, will end up with
a payoff of υ i from the period of the deviation onwards. This kind of equilibrium punishment is
commonly known as Nash reversion.
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Definition 7.3: Individually Rational Payoff

A minmax payoff for player i is a payoff υ̃i specified as

υ̃i ≡ min
β−i∈∆(S−i)

max
βi∈∆(Si)

υi(βi,β−i).

A payoff profile υ = (υ1, . . . ,υn) is strictly individual rational if υi > υ̃i for each player
i ∈ N.

Suppose that a given player plays at each period t of a repeated game the optimal reply to her
opponents’ choices. Then, a minmax payoff is the lowest payoff that the players can impose on
such a player. In other words, by appropriately choosing her long-run strategy, any player can
always guarantee herself her minmax payoff in the stage game. Therefore, in this sense, a payoff
lower to a player’s minmax payoff is not individually rational for such a player. It is intuitive that
a player’s minmax payoff gives us a credible punishment for such a player in the event that she
deviates from some prescribed long-run strategy.

Our two main “folk” theorems are then stated as follows.

Theorem 7.1: Nash-Threat Folk Theorem

Take a stage game Γ and pick any υ ∈ϒ such that υi > υ i for each player i∈N. Then, there
is some δ ∈ [0,1) such that for each δ > δ , there is a SPE of the infinitely repeated game ΓR

with average discounted payoff profile υ .

Theorem 7.2: Minmax Folk Theorem

Take a (finite) stage game Γ and let ϒ ∗ ⊆ ϒ be the set of feasible and strictly individual
rational payoffs. Then, if υ belongs to the interior of ϒ ∗, there is some δ ∈ [0,1) such that
for each δ > δ , there is a SPE of the infinitely repeated game ΓR with average discounted
payoff profile υ .

As already indicated, standard equilibrium requirements do little in repeated interactions to nar-
row down the set of equilibria. This makes difficult to use the theory to predict behavior and to
conduct “comparative statics” analyses. In applications, though, game theorists usually introduce
some refinements to narrow down achievable equilibria and payoffs. Some examples of the require-
ments typically used to refine equilibria in repeated games are efficiency constraints, stationarity
in equilibrium proposals, the use of Markov strategies, or of symmetric strategies.

Finally, although “folk” theorems deliver undesirable “anything can happen” messages, they
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are useful because the constructions of their proofs tell us exactly how payoffs can be achieved
and—perhaps more importantly—what are the qualitative features of rewards or punishments im-
plicit in equilibrium social norms.
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8. Applications

8.1. Models of Communication: Sender-Receiver Games

Dynamic games where players hold different initial information are particularly rich for appli-
cations of economic, political, and social interest. The prominent field of information economics is
widely recognized for having explored two basic market failures, known as adverse selection and
moral hazard, which are caused by information asymmetries between contracting parties. Such
models have also proposed some plausible (partial) solutions to the market failures, such as signal-

ing or screening. Overall, this literature has made it clear that asymmetries of information between
contracting parties lead to inefficiencies.1 In practice, this kind of failures translate into that (1) job
candidates invest too much in their education just to signal their abilities, (2) high quality goods
are driven out of the market, and even markets for some goods collapse, when sellers have more
information than buyers about the intrinsic characteristics of the goods, or (3) insurance compa-
nies fail to offer full insurance to their clients when they cannot observe the effort that the insured
agents exert on avoiding accidents.

To explore more specifically these applications, let us consider first a general model where
there are two players, an informed Sender (S) and an uninformed Receiver (R). These players’
preferences depend on an (endogenous) action a ∈ A and a (exogenous) state of the world θ ∈Θ .
Use ui(a,θ) to indicate the utility that receives player i = S,R under the action/state pair (a,θ).
The state θ is selected by Nature according to a probability distribution F(θ). For most parts of
the analysis, consider that S learns the true value of θ at no cost.

1 The seminal contributions to information economics are Akerlof (1970), Spence (1973), and Rothschild and
Stiglitz (1976). In 2001, George Akerlof, Michael Spence, and Joseph Stiglitz were awarded the Nobel prize in
Economics for their work on these topics.



8.1.1. Adverse Selection

Our first application of information economics focuses on the labor market and it is based on
Akerlof (1970)’s influential work. To introduce it, we need to add more structure to our general
model. In particular, consider that player S summarizes a continuum set of job candidates. Each
candidate has a productivity level θ ∈ Θ ≡ [θ ,θ ] ⊆ R+ that is drawn independently from the
common distribution F(θ). Therefore, player S can be regarded as a representative job candidate
that receives initially her productivity θ according to the distribution F(θ). In addition, note that,
for a given value θ , F(θ) represents as well the proportion of candidates with a productivity level
no higher than θ . Assume further that F(θ) is a smooth function with a density f (θ)> 0. Player
S learns the true value of θ at no cost but R knowns only the distribution F(θ) of productivities.
In other words, θ is S’s private information or type. If S has productivity level θ , then she has a
reservation wage r(θ) that describes what she would earn outside of this labor market. Assume that
r(θ) is a continuous function that increases (strictly) in θ ; the candidate obtains higher earnings
outside the job market if she has higher levels of productivity. Player R summarizes a continuum
of firms that wish to hire job candidates and the representative firm offers a salary a ∈ [a,a]⊆ R+

to the representative candidate; a salary here corresponds to the action a of the general framework.

Firms act competitively so that (the representative) firm R cannot offer a salary a lower than θ

if she knew that the true productivity of the (representative) candidate is θ .2 As to the other side
of the market, notice that S accepts a job offer a only if r(θ)≤ a.

The specific preferences of these players are given by

uS(a,θ) =

a if r(θ)≤ a

r(θ) if r(θ)> a,

and
uR(a,θ) = θ −a.

Suppose for a moment that the productivity level θ were known by firms as well so that there
were no informational asymmetries between the players. Then, an efficient equilibrium would
imply that player R offers a salary â(θ) = θ and that player S accepts whenever r(θ)≤ θ = â(θ).
The efficient fraction of hired candidates would be Θ̂ = {θ ∈Θ : r(θ)≤ θ}. The utility levels at

2 Suppose that θ were known to firms. Then, if a particular firm offered a salary w < θ , competing firms would
benefit by offering a salary a+ε , for ε > 0. Competition for candidates would lead firms to act in such a fashion until
they offered a salary no less than θ .
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this efficient situation for the players would be uS(â(θ),θ) = θ and uR(â(θ),θ) = 0. Importantly,
in this case firms would be able to make wage offers â(θ) which are contingent on the (observed)
productivity θ of the candidates.

However, in the considered job market, where θ is in fact S’s private information, a competitive

equilibrium is a salary a∗—which cannot be conditional on θ—and a fraction of hired candidates
Θ ∗ that satisfy:

Θ
∗ = {θ ∈Θ : r(θ)≤ a∗} (8.1)

and
a∗ = E[θ |θ ∈Θ

∗]. (8.2)

Thus, to find equilibria, we need to solve Equation 8.2 and Equation 8.1 simultaneously. Sub-
stitution of Equation 8.1 into Equation 8.2, leads to the following equilibrium condition for the
salary

a∗ = E[θ |r(θ)≤ a∗].

Then, if we consider a function φ : [θ ,θ ]→ [θ ,θ ] specified as φ(a)≡ E[θ |r(θ)≤ a], we observe
that the required equilibrium condition tells us that an equilibrium salary a∗ is a fixed point for the
function φ .3 We can guarantee the existence of (at least) a fixed point for a real value function such
as φ : [θ ,θ ]→ [θ ,θ ] if φ(θ) is a continuous function.4 Notice that continuity of the function φ(θ)

holds because we are assuming that r(θ) is a continuous function of θ and that the density f (θ) is
positive.

With these elements at hand, we can now compare the efficient situation associated to having no
informational asymmetries with the competitive equilibrium under private information. To make
our comparison as clear as possible, assume further that the function r(θ) satisfies r(θ) ≡ θ − ε

for each θ ∈Θ , for some ε > 0. Then, the efficient situation would imply that all candidates are
hired, Θ̂ =Θ . As to the competitive equilibrium we have already argued that there is at least one
equilibrium wage a∗ ∈ [θ ,θ ]. We cannot rule out the possibility that there are multiple equilibria
but, for the sake of simplicity, let us restrict attention to situations with a unique competitive
equilibrium. One possibility then is that a∗ ∈ (θ ,θ). In this case, we observe that there must be
some θ̃(ε) ∈ (a∗,θ ] such that r(θ)> a∗ for each θ ∈ (θ̃(ε),θ ]. Then, as ε > 0 vanishes, it follows
from the expression in Equation 8.1 that the fraction of hired candidates tends to Θ ∗ = [θ ,a∗], with
a∗ < θ . In other words, as the (outside) reservation wage approaches the actual productivity of

3 A fixed point of a function φ : B→ B is a value x ∈ B such that x = φ(x).
4 This claim follows directly from Brower’s fixed point theorem.
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candidates, the most efficient candidates will be faced with an average salary offer a∗ lower than
what they could earn outside the job market. This phenomenon is known as market unravelling and
describes a situation where the most productive candidates are driven out of the market. Intuitively,
when the average offered salary a∗ = E[θ |r(θ) ≤ a∗] < θ is less than their outside option, the
most productive candidates reject the offer (and turn to the outside option). An extreme case of this
market unravelling would be that a∗= θ , where the market completely breaks down. The (ex-post)
utility levels at this inefficient equilibrium for the players would be uS(a∗,θ) = E[θ |r(θ) ≤ a∗]

and uR(a∗,θ) = θ −E[θ |r(θ)≤ a∗].

8.1.2. Signaling

To mitigate the market inefficiencies caused by adverse selection, in practice individuals make
certain decisions that, under some conditions, allow them to transmit credibly their private in-
formation to the uniformed parties. Following our job market story, one possibility here is that
candidates make costly education choices to transmit information to employers about their true
productivity. Notably, although education might actually improve one’s productivity, it is crucial
for the mechanism that we now present to work that education does not affect the candidate’s
productivity. Considering that education does improve one’s productivity is conceivably a plausi-
ble assumption in some applications but signaling does not consider this assumption as part of its
mechanism. In our story, firms are aware of this and they do not expect to find gains in a candi-
date’s productivity due to education. Instead, firms know how the cost of investing in education
relates to the candidates’ actual productivities—that is, as usually, they know the entire description
of the game—, which allows them to make inferences on the productivity of the candidates.

The signaling mechanism considered here is based on Spence (1973)’s work. The intuitive
message is that, in some circumstances, high-productivity candidates may have incentives to invest
in costly education simply to distinguish themselves from low-productivity candidates. Then, firms
may infer that candidates that invest in education have in fact high productivity levels. We have
already analyzed two extensive form games that describe this sort of signaling situations: the
canonical job market signaling game with binary choices depicted in Figure 3.3 and the investment
trust game depicted in Figure 6.2. As considered then, PBNE and sequential equilibrium are the
suitable solution concepts that allow us to study behavior in these environments.

The general setting of signaling follows by enlarging the domain of preferences in the adverse
selection model described earlier in Subsection 8.1.1. In addition, we drop out for simplicity the
outside activity and, therefore, also the reservation wage r(θ) from the preference specification.
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Neither the formal structure of the model nor its intuitive messages rely on this element.5 Specifi-
cally, preferences depend now also on the choice of an education level m ∈ [m,m]⊆ R+ by player
S. In general, a choice such as m is considered in signaling games as a signal or message. Signals

are actions, observable by R, that can be chosen conditional on S’s unobservable private informa-
tion. This correlation may allow R to learn something about S’s private information. The players’
preferences are described now by utility functions uS(m,a,θ) and uR(m,a,θ). A particularly nat-
ural specification for these utilities in many applications would be: uS(m,a,θ) = a− c(m,θ) and
uR(m,a,θ) = θ −a, where c : [m,m]× [θ ,θ ]→R+ is a function that describes the cost to a candi-
date of productivity θ from investing in an education level m.

In this setting, behavior strategies are given by a collection of probability distributions6

σ ≡
{

σ(· |θ) ∈ ∆([m,m]) : θ ∈ [θ ,θ ]
}
,

for job candidates, and a collection of probability distributions

α ≡ {α(· |m) ∈ ∆([a,a]) : m ∈ [m,m]} ,

for firms. In particular, α(m |θ) indicates the probability that the representative candidate chooses
education level m when her productivity is θ and α(a |m) is the probability that the representative
firm offers salary a when it observes a candidate with education level m. Recall that F(θ), f (θ)

describe the prior beliefs in this model. Then, let µ(θ |m) be the posterior probability that the
representative firm assigns to θ being the true productivity of the candidate when it observes a
résumé with education level m. That is, posteriors are described by a collection of probability
distributions µ =

{
µ(· |m) ∈ ∆(Θ) : m ∈ [m,m]

}
. The application of the general definition of

PBNE to this setting is:

5 This reservation wage r(θ) was a crucial element behind the rationale of the adverse selection phenomenon, but
it is no longer needed to explore how players can credibly signal their pieces of private information.

6 All notation is presented for the case where the sets of actions are uncountably infinite. The model continues to
work through for the case where actions are finite by suitably modifying notation.
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Definition 8.1

A signaling PBNE is a pair of behavior strategies (σ∗,α∗) and a system of (posterior) beliefs
µ∗ such that

1. Optimal response by S: for each θ ∈ [θ ,θ ], we have that σ∗(m |θ)> 0 implies that

∫ a

a
α
∗(a |m)uS(m,a,θ)da≥

∫ a

a
α
∗(a |m′)uS(m′,a,θ)da ∀m′ ∈ [m,m].

2. Optimal response by R: for each m ∈ [m,m] such that σ∗(m |θ) > 0 for some θ ∈
[θ ,θ ], we have that α∗(a |m)> 0 implies that∫

Θ

µ
∗(θ |m)uR(m,a,θ)dθ ≥

∫
Θ

µ
∗(θ |m)uR(m,a′,θ)dθ ∀a′ ∈ [a,a].

3. Consistent posteriors: posteriors follow from priors and from S’s signaling choice
according to Bayes’ rule, that is, for each m∈ [m,m] such that σ∗(m |θ ′)> 0 for some
θ ′ ∈ [θ ,θ ], we have that

µ
∗(θ |m) =

σ∗(m |θ) f (θ)∫
Θ

σ∗(m |θ ′) f (θ ′)dθ ′
.

Condition 1 above says that a candidate with productivity θ places positive probability on an
education level m only if that choice maximizes her expected utility given the optimal choice α∗ of
the firm. Condition 2 states that, upon observing education level m, the firm places positive prob-
ability on a salary a only if it maximizes its expected utility, conditional on the induced posteriors
µ∗. Lastly, condition 3 requires that the posteriors µ∗ be consistent with the candidate’s optimal
choice σ∗ and the priors f (θ), according to Bayes’ rule. Importantly, the required condition for
consistent posteriors only states how posteriors follow from the standard notion of conditional
probability for information sets m ∈ [m,m] that are in fact reached under the optimal choice of the
candidate. To determine how posteriors would be obtained at education levels chosen with zero
probability under S’s proposed behavior strategy, we would need to add the requirement of the
definition of the sequential equilibrium.

As already explored, the extent to which S’s strategy credibly communicates can be categorized
using three “qualitative” classes of equilibrium proposals: pooling, completely separating, and
semi-separating equilibria.
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1. We say that a signaling equilibrium (σ∗,α∗,µ∗) is pooling if S’s strategy is independent
of her type: for each θ ∈ [θ ,θ ], we have σ∗(m |θ) = σ∗(m) for each m ∈ [m,m]. As a
consequence, notice that the requirement in 3 of the equilibrium definition leads to that
posteriors coincide with priors in this class of equilibria: for each m such that σ∗(m) > 0,
we have µ∗(θ |m) = f (θ) for each θ ∈ [θ ,θ ].

2. On the opposite extreme of the spectrum, we say that a signaling equilibrium (σ∗,α∗,µ∗) is
completely separating if each type θ of S sends a different signal with probability one: for
each θ ∈ [θ ,θ ], we have σ∗(m |θ) = 1 if m = m∗(θ), where m∗(θ) is a (strictly) monotone
function in θ ∈ [θ ,θ ]. Then, the requirement in 3 of the equilibrium definition leads to
that, according its posteriors, the firm learns always the true productivity of the candidate:
for each m such that σ∗(m |θ) > 0 for some θ ∈ [θ ,θ ], we have µ∗(θ |m) = 1 whenever
m = m∗(θ).

In addition to these two extreme cases, we can also obtain very interesting semi-separating

equilibria that are partially revealing of S’s private information.

It is not difficult to construct a pooling—completely uninformative—equilibrium for the pre-
sented model. Suppose that all candidates, regardless of their true productivities, pick with proba-
bility one some given education level m̃ ∈ [m,m], that is, σ∗(m̃ |θ) = 1 for each θ ∈ [θ ,θ ]. Then,
consider a best-reply by the firms such that, upon observing m̃, they offer with probability one a
salary ã that maximizes their expected utility when the posterior belief coincide with the prior, that
is,

ã ∈ arg max
a∈[a,a]

∫
Θ

f (θ)uR(m̃,a,θ)dθ .

On the other hand, suppose that for any other education level m 6= m̃, firms offer with probability
one a salary that maximizes their expected utility when the posterior assigns probability one to θ

being the true productivity, that is,

â ∈ arg max
a∈[a,a]

uR(m,a,θ).

For instance, for the specification uR(m,a,θ) = θ − a, we have ã = E[θ ] and â = θ—of course,
provided that firms are in a competitive environment where they cannot offer a salary lower than
θ . Then, provided that the least productive candidate does not strictly prefer salary â over ã, all
types θ of S prefer salary ã over â so that everyone will in equilibrium pick education level m̃

rather than any other education level. Intuitively, starting from a situation where all candidates
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pick a given education level m̃ and receive in return the salary m̃ firms would offer when they have
no other information beyond the prior F(θ), f (θ), no type θ of player S has incentives to choose
an education level different from m̃. This is the case because deviating from m̃ would lead firms
to offer the salary â they would optimally offer to the least skilled candidate. By construction of
the equilibrium, â acts as the highest possible penalty, which would leave any deviating candidate
strictly worse off.

It is not surprising that signaling situations have equilibria where Senders do not transmit any
information whatsoever because, owing to the conflict captured by preferences, they have some
interest in not letting Receivers know the true value of the unknown state. It is the existence
of separating equilibria what constitutes the truly interesting case for signaling situations. When
separating equilibria exists, this means that it is possible for Senders to transmit credibly their
private information even though there is a conflict of interest between them and the Receivers. As
it turns out, the existence of separating equilibria requires a systematic relationship between signals
and types. A particularly appropriate specification for this relationship is commonly known as the
single-crossing condition and it plays an important role in games of information transmission and,
more generally, in situations of asymmetric information.

Definition 8.2: Single-Crossing Condition

The preferences of the Sender satisfy the single-crossing condition if uS(m′,a′,θ) >

uS(m,a,θ) for two signals m′ > m implies uS(m′,a′,θ ′)> uS(m,a,θ ′) for each θ ′ > θ .

In words, the single-crossing condition requires that a candidate of a certain productivity θ ′

that picks an education level m′, higher than another m and, in return, receives a salary a′ be
(strictly) better off relative to having a pair (m,a) whenever any candidate with lower productivity
θ ranks (weakly) the pairs (m′,a′) and (m,a) in the same way. In most applications, uS(m,a,θ)

is decreasing in m and increasing in a so that indifference curves over the space of commodities
(m,a) ∈ [m,m]× [a,a] are well-defined for each θ ∈ [θ ,θ ] (think of m as a bad and of a as a good
in typical applications). Then, this condition can geometrically be seen as any two indifference
curves over the space of commodities (m,a) ∈ [m,m]× [a,a] of two different types of S, θ and
θ ′, crossing exactly once—hence, the name. Notice that if a given type θ is indifferent between
two pairs (m′,a′) and (m,a), then the single-crossing condition states that a higher type θ ′ must
prefer to pick m′ rather than m. Therefore the single-crossing condition relates signals to types
in a way such that higher productivity candidates prefer (weakly) to pick higher education levels
in equilibrium. Since firms know the entire description of the candidates’ preferences, they can
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accordingly infer in equilibrium that higher education levels correspond to higher productivity
candidates.

Suppose that uS(m,a,θ) is a smooth function, strictly decreasing in m and strictly decreasing
in a. Then, we can study the expression a(m;θ) of an indifference curve for type θ of S by
considering uS(m,a(m;θ),θ) = ūS(θ) so that

∂uS

∂m
+

∂uS

∂a
· da(m;θ)

dm

∣∣∣
ūS(θ)

= 0 ⇒ da(m;θ)

dm

∣∣∣
ūS(θ)

=−∂uS(·,θ)/∂m
∂uS(·,θ)/∂a

.

Then, if the ratio −∂uS(·,θ)/∂m
∂uS(·,θ)/∂a decreases in θ , we obtain the single-crossing condition. The differ-

entiable version of the single-crossing condition is often known as the Spence-Mirrlees condition.

Figure 8.1 illustrates the Spence-Mirrlees condition with two indifference curves that yield a
common level of utility ūS = ūS(θ

′) = ūS(θ) to two different types θ ′,θ of the Sender, with θ ′> θ .
We observe that the feature that the slope da(m;θ)/dm|ūS(θ) of the indifference curve decreases
with θ leads to that the indifference curves cross exactly once. Figure 8.1 also depicts another
indifference curve for the high type θ ′ of the Sender that yields such a type a higher utility level,
that is, ũS(θ

′) > ūs(θ
′). Notice that starting from an education/salary pair (m1,a1), there is a re-

gion, bounded from below by the blue indifference curve and from above by the red indifference
curve, where type θ ′ increases her utility by raising the education level but where type θ utility de-
creases instead. This gives us the geometric illustration of how the single-crossing condition may
lead higher types benefit by raising their education levels while, at the same time, it is not in the
interest of lower types to do raise their education levels. In particular, the low productivity candi-
date is indifferent between the pairs (m1,a1) and (m2,a2) whereas the high productivity candidate
strictly prefers (m2,a2) over (m1,a1). In this way, candidates with different productivity levels may
have incentives to “separate” themselves from each other. Consider the preference specification
uS(m,a,θ) = a−c(m,θ) and assume further that c(m,θ) is twice-continuously differentiable with
∂c(m,θ)/∂m > 0 for each θ ∈ [θ ,θ ]; obtaining higher levels of education is more costly. Then,
the Spence-Mirrlees condition—which, in turn, implies the single-crossing condition—requires
that the derivative ∂c(m,θ)/∂m > 0 decreases in θ . Intuitively, the marginal cost of investing in
education must be higher for low productivity candidates. Does it make sense?

The single-crossing condition is useful to obtain the following version of the existence of a
completely separating equilibrium for our signaling game. A few additional (and more technical)
conditions are required in this version of the existence result. Consider our signaling game and
suppose that
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a

m

a(m;θ)|ūS

a(m;θ ′)|ũS
a(m;θ ′)|ūS

m1

a1

m2

a2

Figure 8.1 – Spence-Mirrlees condition (θ ′ > θ )

1. Θ = {θ1, . . . ,θk, . . . ,θK} is a finite set of states of the world.

2. uR(m,a,θ) and uS(m,a,θ) are continuous in (m,a).

3. uS(m,a,θ) is strictly decreasing in m and strictly increasing in a, for each θ ∈Θ .

4. R’s best-reply when it leans fully S’s type,

BRR(θ)≡ arg max
a∈[a,a]

uR(m,a,θ),

is uniquely defined, independent of the value of m.

5. The single-crossing condition holds.

6. There exist some education levels m∗1,m
H ∈ [m,m] such that

uS(mH ,BRR(θK),θK)< uS(m∗1,BRR(θ1),θK).

The requirement in 6. is a boundary condition that makes sending high levels of education, such as
mH , unattractive to S. In particular, it states that the most skilled candidate prefers to be treated by
the job market as the least skilled candidate rather than choosing a very high education level mH

and being treated by the market as the most skilled candidate.
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Proposition 8.1

Under the six conditions above, the signaling game has a completely separating equilibrium
where the set of education levels [m,m] is partitioned into a finite set

{
[m,m∗1],(m

∗
1,m

∗
2], . . . ,(m

∗
k−1,m

∗
k ], . . .(m

∗
K−1,m

∗
K]
}
, with m∗K = m,

of equilibrium education subsets, each type θk ∈Θ sends with probability one the education
level m∗k , and R’s posterior puts probability one on θk being the true type of S when it
observes education level m∗k .

To show how the key result in the proposition works, let us construct a separating equilibrium
using the sufficient conditions stated above. Consider the following equilibrium proposal:

• Type θ1 of S chooses an education level m∗1 that solves her utility maximization problem,
provided that R learns the true type of S, that is

m∗1 ∈ arg max
m∈[m,m]

uS(m,BRR(θ1),θ1)

• Suppose that m∗κ ∈ argmaxm∈[m,m] uS(m,BRR(θκ),θκ) have been specified for κ = 1, . . . ,k−
1 and set the value functions v∗S(θκ) ≡ uS(m∗κ ,BRR(θκ),θκ). Then, let m∗k be an education
level that maximizes type θk utility (again, conditional on that R learns S’s true productivity),
subject to the condition that type θk does not (strictly) wish to mimic the immediately lower
productivity candidate, that is,

m∗k ∈arg max
m∈[m,m]

uS(m,BRR(θk),θk)

s.t.: uS(m,BRR(θk),θk−1)≤ v∗S(θk−1).

Then, let this process go on iteratively to determine the remaining education levels m∗κ for
κ = k+ 1, . . . ,K. Clearly, with this process, each player is best responding to the strategy
chosen by her opponent, conditional on the information that she possesses according to
Bayesian posteriors.

• As always, to check whether there are incentives to deviate, we also need to specify the play-
ers’ strategies at information sets that fall out of the path described by equilibrium behavior.
Then, suppose that R chooses (a) BRR(θk) upon education levels in the interval [m∗k ,m

∗
k+1),
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(b) BRR(θ1) upon education levels lower than m∗1, and (c) BRR(θK) upon education levels
higher than m∗K . That is, firms are assumed to regard (a) any education level that would
correspond to θk, but which indeed exceeds m∗k , as if it actually corresponds to type θk, (b)
any education level lower than the lowest level in equilibrium as if it corresponds to the least
skilled candidate, and (c) any education level higher than the highest level in equilibrium as
if it corresponds to the most skilled candidate.

In this equilibrium proposal, the single-crossing condition begins playing its role for types no lower
than θk. Suppose that the best-reply of the firms BRR(θk) is strictly increasing in θk. Then, the
single-crossing condition implies that the candidates’ choices m∗k are strictly increasing in their
true productivity θk.

This construction of equilibria involves an “unraveling argument” where high-productivity types
find it profitable to send signals different from lower productivity types. Furthermore, the equi-
libria that we have constructed involve inefficient levels of signaling. Under the condition that
uS(m,a,θ) is decreasing in the education level m, it follows that all types θκ , for κ = 2, . . . ,K,
invest in education more than they would do in the absence of informational asymmetries in order
avoid being treated by firms like less skilled candidates.

As we can observe from the earlier constructions of pooling and separating equilibria, signaling
games exhibit a profound multiplicity of equilibria. The reason behind this multiplicity is that the
PBNE notion does not place restrictions on the strategies that Receivers may choose at information
sets that are not reached under the Senders’ strategies in equilibrium proposals. To select among
the multiple equilibria, the literature offers some refinements, which rely on Kohlberg and Mertens
(1986)’s notion of strategy stability and are appealing to signaling situations.

8.1.3. Cheap Talk

Although the systematic relationship between pieces of private information and signals captured
by the single-crossing condition makes sense in many environments, other situations do not fit
into this assumption. An extreme instance of environments where the single-crossing condition
is absent are those where, because of their preference specification, sending signals is costless for
Senders. Given the general notation ui(m,a,θ) to describe the preferences of each player i = S,R,
here a ∈ A is an action taken by the uninformed Receiver, m ∈ M is a message chosen by the
informed Sender,7 and θ ∈Θ is a payoff-relevant state of the world. Then, a cheap-talk model

7 We rather use the terminology “message” instead of “signal” because this is the usual convention in the related
literature. Other than the assumption that they do not enter the players’ utility functions, messages m play a totally
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is a signaling game where ui(m,a,θ) is independent of m: ui(m,a,θ) = ui(a,θ) for each (a,θ).
Intuitively, player S can talk as she pleases about her private information and such talking bears her
no direct cost. These situations abound, right? Notably, unlike what we studied in repeated games,
we are not considering here a repeated interaction between S and R so that we might think of costs
to S in terms of reputation. Cheap-talk settings are static, with a one-shot interaction between
the players. Thus, since there is no cost to S from not revealing her private information, neither
in her preference specification nor in terms of reputation, one may wonder why would she have
incentives to transmit any information at all. The key is that, by not transmitting (at least some
of) her private information, S may induce R to take an action that, in turns, hurts S. In this way,
cheap-talk situations may capture endogenous costs to Senders that are realized in equilibrium.
The interesting point of cheap-talk models is that such endogenous costs may lead Senders to
reveal some information, despite of their conflicting interests with Receivers and the absence of
direct costs from hiding information.

Let me present a model that follows closely Crawford and Sobel (1982). Assume that Θ ≡ [0,1]
and that the prior on θ is given by a continuous distribution F(θ) with density f (θ). Assume
also that the utility functions ui(a,θ) are twice-continuously differentiable for i = S,R and they
have a unique maximum ai(θ) for each θ . A typical example of utility functions that satisfy
these assumptions are those corresponding to single-peaked preferences where one player is biased
relative to the other: uS =−(a− (θ +b))2 and uR =−(a−θ)2, with b > 0. In this case, aS(θ) =

θ +b while aR(θ) = θ , so that the conflict of interest between S and R is described by the bias b.
Most applications of the cheap-talk theory consider such preference specification and, furthermore,
assume that F(θ) corresponds to the uniform distribution on the interval [0,1].8

The cheap-talk game proceeds as follows. First, Nature select a value θ for the state and S

learns such a value. Then, S sends to R a (costless) message m ∈M, where M is any infinite set.
Finally, R uses the message received from S to update her priors and to choose (optimally, based
on her posteriors) an action a ∈ A. The selected pair (a,θ) determines the payoffs ui(a,θ) to the
players. In this environment, a (pure) strategy9 for S is a function aR : Θ →M and a (pure) strategy
for R is a function mR : M→ A. Then, mS(θ) indicates the message sent by S when she learns that

analogous role to signals in signaling models. Their purpose in both classes of models is for the informed player to
transmit information to the uniformed player.

8 We usually refer to this case as the “uniform-quadratic” leading example.
9 Unlike the exposition of signaling games, we consider now only strategies without randomizations because this

suffices to explore the most important features of cheap-talk models. In particular, the stated assumptions guaran-
tee that R’s best-reply is a unique and that R will not randomize in equilibrium. Also, Crawford and Sobel (1982)
demonstrate that S will neither randomize in equilibrium.
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the true value of the state is θ and aR indicates the action chosen by R when she hears message m.

A PBNE for this game is defined in the usual way.

Definition 8.3

A cheap-talk (pure-strategy) PBNE is a pair of strategies (m∗S,a
∗
R) and a system of beliefs

µ∗ such that

1. Optimal response by S: for each θ ∈Θ , we have that m∗S(θ) = m implies that

uS(a∗R(m),θ)≥ uS(a∗R(m
′),θ) ∀m′ ∈M.

2. Optimal response by R: for each m ∈M such that m∗S(θ) = m for some θ ∈ [0,1], we
have that a∗R(m) = a implies that

∫ 1

0
µ
∗(θ |m)uR(a,θ)dθ ≥

∫ 1

0
µ
∗(θ |m)uR(a′,θ)dθ ∀a′ ∈ A.

3. Consistent posteriors: posteriors follow from priors and from S’s signaling choice
according to Bayes’ rule, that is, for each m ∈ M such that m∗S(θ

′) = m for some
θ ′ ∈ [0,1], we have that

µ
∗(θ |m) =

 f (θ)
/∫

[θ ′ :m∗S(θ
′)=m] f (θ ′)dθ ′ for m∗S(θ) = m;

0 for m∗S(θ) 6= m.

We say that a pair of equilibrium strategies (m∗S,a
∗
R) induces action a if the probability (accord-

ing to priors) that some states lead R to choose action a under (m∗S,a
∗
R) is positive. Then, the set of

actions induced in equilibrium is{
a ∈ A :

∫
[θ∈Θ :a∗R(m

∗
S(θ))=a]

f (θ)dθ > 0
}
.

Notice that a pooling equilibrium would induce a single action because the Receiver would max-
imize her expected utility using her priors regardless of the messages that she receives. On the
other extreme, under the stated assumptions, if aR(θ) is a monotone function, then a completely
separating equilibrium necessarily induces an infinite uncountable set of actions. Specifically, in
this case, the cardinality of the set of induced actions in a completely separating equilibrium must
coincide with the cardinality of the unit interval [0,1]. This is the case because the Receiver learns
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the true value of the state. Then, if aR(θ) is monotone, R chooses a different optimal action for
each θ ∈ [0,1].10 Crawford and Sobel (1982) showed that the set of induced actions in any cheap-
talk PBNE lies between 1 and a finite upper bound. More specifically, Crawford and Sobel (1982)
demonstrated that there exists a positive integer N∗ such that (1) there is no equilibrium than in-
duces more than N∗ actions and (2) for each integer N with 1 ≤ N ≤ N∗ there exists at least one
PBNE where the set of induced actions has cardinality N. In other words, for cheap-talk situa-
tions, (1) there is no completely separating equilibrium and (2) there is always at least one pooling
equilibrium and, perhaps, other semi-separating equilibrium where S transmits partially her private
information. Full communication is not possible in cheap-talk situations and it is always possible
for the Sender to “babble” when she talks cheap. These implications are intuitive. It is perhaps
less intuitive that there may exists other equilibria where the Sender does communicate partially
despite of the absence of costs from hiding information and the presence of conflicting interests
with the Receiver. Under uniform priors, and the preference specification uS = −(a− (θ + b))2

and uR = −(a− θ)2, it follows that the upper bound N∗(b) depends continuously on the bias b.
Furthermore, limb→0 N∗(b) = +∞ and limb→+∞ N∗(b) = 1. That is, for the “uniform-quadratic”
example, equilibrium can be fully revealing if the bias vanishes and only “babbling” equilibria
exist when the bias is sufficiently high.

As it was the case in signaling games, cheap-talk games have multiple equilibria. In cheap-talk
situations, though, equilibria multiplicity is even more profound. Specifically, cheap-talk games
have three types of equilibrium indeterminacies:

1. Multiple best-replies to messages that are not sent with positive probability in the equilibrium
proposal. This type of indeterminacy is typical in dynamic games with imperfect information
and it is not a particular feature of cheap-talk models.

2. Multiple meaning of messages. This type of indeterminacy is a particular feature of cheap-
talk situations. Notice that any given system of equilibrium beliefs where S does not babble
may be induced by multiple different associations between S’s type θ and the message m.
In other words, when there is some communication, messages have no intrinsic meaning
and—unless we impose further assumptions about the intrinsic meaning of messages—the
set of messages does not give us a “language” where each word could be interpreted literally.
One can determine the amount of information transmitted for each equilibrium but the actual
meaning of messages cannot be determined in equilibrium. In other words, language is
endogenously determined simultaneously by both S and R.

10 Clearly, this is necessarily the case for the specification uR(a,θ) =−(a−θ)2.
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3. Multiple associations between states of the world θ and induced actions in equilibrium. This
type of indeterminacy follows from the lack of intrinsic meaning of messages.

Many equilibrium refinements have been proposed in the literature to reasonably select among
equilibria. Interestingly, using the Kohlberg and Mertens (1986)’s strategic stability approach,
Chen et al. (2008) propose a selection criterion that selects the most informative equilibria in
cheap-talk situations, that is, equilibria that induce exactly a number N∗ of actions. Their crite-
rion requires that a condition, which they label as “no incentive to separate (NITS),” be satisfied.
In words, the NITS condition requires that the lowest type θ = 0 of S prefers her equilibrium
payoff to the payoff that she would obtain if R knew her type and chose accordingly her optimal
action. Selection of the most informative equilibria requires also an additional condition regarding
monotonicity of R’s best-reply. Such conditions required for the selection of the most informative
equilibria under Chen et al. (2008)’s approach are in particular satisfied in the “uniform-quadratic”
case, which is frequently considered in applications.

While fully revealing equilibria exist in signaling games that satisfy the single-crossing con-
dition, standard cheap-talk games do not have fully communicative equilibria. This leads to the
question of whether one can propose interesting variations of the standard cheap-talk game in or-
der to obtain fully communicative equilibria. Unfortunately, the mechanism behind the standard
cheap-talk framework that leads to severe limits in communication is robust. This is why varia-
tions of the model where communication is enhanced are necessarily based on introducing some
common interests between the players. One way of doing this is by considering that both the set
of states and the set of actions are multi-dimensional. In a nutshell, notice that effective commu-
nication requires that different types of S have different preferences over their final payoffs. In
signaling games, the required difference in preferences appear because there is a direct cost from
sending messages. Then, we can reasonably assume that different types bear different costs form
sending their messages. In the standard cheap-talk setting, the difference appears when different
types of S prefer different optimal actions picked by R. Interestingly, when states and actions have
multiple dimensions, the heterogeneity may appear simply from the fact that different types may
have different preferences about the relative importance of how the action matches the state across
their different dimensions. With this logic, Chakraborty and Harbaugh (2010) show that fully in-
formative equilibria exist in multi-dimensional settings when the preferences of S do not depend
on the state.11 Following this reasoning, Battaglini (2002) shows that in n-dimensional models

11 Also, Chakraborty and Harbaugh (2007) show that full communication exists in multi-dimensional settings when
(1) the different dimensions of the state are independently drawn from a common distribution, (2) preferences are ad-
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with quadratic preferences, S and R have common interests along n− 1 dimensions which, under
some conditions, enables full communication.

Another interesting variation is to consider more than one Sender and ask whether competition
between Senders can enhance communication. For one-dimensional cheap-talk models, Krishna
and Morgan (2001) show that full revelation is possible in equilibrium when Senders speak out
simultaneously. Their argument is as follows. Consider two Senders j = 1,2, with positive biases
b j > 0, and a Receiver that wishes to choose an action that coincides with the true value of the
state, aR(θ) ∈ θ for each θ ∈ [0,1]. Let us restrict attention to equilibria where messages have
intrinsic meaning so that m j = θ ∈ [0,1] is a statement that θ is the true value of the state. Let
aR(m1,m2) be the action chosen by the Receiver when she hears message m j from Sender j. Then,
consider an equilibrium proposal where the Receiver responds by choosing the announced state
aR(m,m) = m if both Senders report some common message m = θ . Now suppose that one of the
Senders, say j = 2, considers whether or not to deviate from telling the truth, provided that the
opponent is telling the truth, m1 = θ . Then, for each given state θ , Sender 2 has no incentives to
deviate if the Receiver responds by harming her more under any m2 6= m1 = θ than under m2 = θ .
A simple way of completing this equilibrium proposal then is by making the Receiver to choose the
worse possible action for any Sender aR(m1,m2) = aR(0) whenever m1 6= m2. Since the Senders’
biases are positive, any Sender prefers the Receiver to pick the action that coincides with the true
value of the state rather than choosing a = 0.

Krishna and Morgan (2001)’s analysis shows the logic of how competition can improve com-
munication when competing Senders report simultaneously.12 Their equilibrium, though, is not
robust to perturbations of the game. For instance, if Senders do not obtain identical information of
if the Receiver hears the messages with some noise, then the proposed equilibrium breaks down.
Less fragile revealing equilibria can be constructed with several Senders when cheap-talk is multi-
dimensional. Battaglini (2002) and Ambrus and Takahashi (2008) provide conditions under which
fully revealing equilibria exists for multi-dimensional settings with several conflicting Senders.
Specifically, Battaglini (2002) considers a setting where a,θ ∈ Rn, each Sender j wishes to min-
imize the distance ‖a− (θ + b j)‖, and the Receiver wishes to minimize the distance ‖a−θ‖. In

ditively separable across the different dimensions, and (3) messages are constrained to stating whether one coordinate
is larger than another.

12 Note that the mechanism the underlies the proposed revealing equilibrium does not work if Senders report se-
quentially instead.
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this case, the Receiver and each Sender j share common interests on the hyperplane specified as{
x ∈ Rn :

1
‖b j‖

b j · x = c
}

where c ∈ R.

Battaglini (2002) then shows that if two Senders j = 1,2 have different biases, b1 6= b2, then it
is possible to construct an equilibrium where the Receiver becomes fully informed. Again, let
aR(m1,m2) be the action chosen by the Receiver when she hears message m j from Sender j. Then,
in a fully revealing equilibrium, each Sender j optimally announces m j = θ j (with probability one)
and the Receiver has an optimal best-reply

a∗R(m1,m2) =

θ1 if θ1 = θ2;

z if θ1 6= θ2,

where z ∈ Rn is any point

z ∈
{

x ∈ Rn : b1 · x =
‖b2‖
‖b1‖

b1 ·θ1

}⋂{
x ∈ Rn : b2 · x =

‖b1‖
‖b2‖

b2 ·θ2

}
.

Recall that each Sender j wishes to minimize the distance

‖a− (θ +b j)‖=+
√

((a−θ)−b j) · ((a−θ)−b j)

= +
√

b j ·b j +(a−θ) · (a−θ)+2[b j ·θ −b j ·a].
(8.3)

Then, in the situation where both Senders truthfully reveal the state m j = θ , each Sender j suffers
a loss ‖b j‖ = +

√
b j ·b j. Given this, if one of them, say j = 2, deviates to choosing any message

m2 6= m1 = θ , we observe from the specification of R’s optimal strategy and from the expression
in Equation 8.3 that she receives even a higher loss because it must be the case that either b1 > b2

or b2 > b1. Specifically, [b2 ·θ −b2 ·a]> 0 so that

‖a∗R(θ1,m2)− (θ +b2)‖>+
√

b2 ·b2 = ‖a∗R(θ1,θ2)− (θ +b2)‖.

Figure 8.2 illustrates how fully revealing equilibrium can be constructed for multi-dimensional
cheap-talk situations with two Senders. The circumferences in red and blue represent indifference
curves for the Senders. Suppose that the true state is θ̄ . Then, the Receiver wishes to pick action
aR(θ̄) = θ̄ , and each Sender j’s most preferred action is θ̄ + b j. The biases are depicted in blue
and red arrows. Then, a fully revealing equilibrium is constructed by considering that both Senders
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θ̄

θ̄ +b1
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a′

2’s indifference curve

1’s indifference curve

Figure 8.2 – Revealing Equilibria: Two-Dimensional Cheap-Talk with Two Senders

announce θ̄ as the true state and the Receiver responds by choosing action a = θ̄ . Both Senders
would then receive payoffs lower than their optimal payoffs. However, things can get even worse
for a Sender that deviates unilaterally, as depicted in the figure. In particular, we can make the
Receiver to respond, upon receiving any message m j 6= θ̄ , with actions such as a′ or a′′. Clearly,
the any deviating Sender j = 1,2 would be worse off when the Receiver picks action a′, relative to
the case where the Receiver chooses action θ̄ .

Despite these interesting attempts to rationalizing communicative behaviors, the general in-
sight provided by the standard cheap-talk setting, where effective communication is severely re-
stricted, continues to hold even for the above mentioned variations. In particular, even for multi-
dimensional settings, cheap-talk communication is restricted if either the state space is bounded
(Ambrus and Takahashi (2008)) or if the dimensions of uncertainty are strongly correlated between
them according to the prior (Levy and Razin (2007)).

8.1.4. Bayesian Persuasion

A feature of dynamic asymmetric information games where an informed speaker communicates
with an uninformed decision maker is that the Sender is ex-ante uninformed, exactly as it is the
Receiver. The only information that both players (commonly) know at the ex-ante stage is the prior
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distribution of the payoff-relevant state. It is at the interim stage when the Sender fully learns the
true value of the state, and yet at this point the Receiver still remains with the priors. Given this,
a crucial assumption of cheap-talk models is that, at the interim stage and after learning the true
value of θ , the Sender decides which message m she sends to the Receiver. In other words, the
Sender announces publicly a relationship between θ and m that she has privately chosen only after
learning the value of θ . The Receiver then uses the relation that the Sender establishes between
θ and m to update the priors (following Bayes’s rule) and picks her optimal action a. Since the
Sender establishes her optimal relation between θ and m conditional on having learned the true
value of the state, she has an “informational advantage” over R at that moment.

Consider now a different plausible environment where the Sender instead selects the relation
between θ and m at the ex-ante stage, before knowing the true value of θ , and then commits to such
a relationship despite of what she might learn subsequently at the interim stage. This assumption
can be interpreted as if S is potentially informed and then chooses to commit to public information
acquisition and disclosure. Since the Sender chooses a relation between θ and m for each possible
value of θ , this information choice is best viewed as acquiring an information structure. A typical
example would be that of designing an experiment that releases subsequently information about θ

that cannot then be concealed or distorted. In this way, when she makes her information decision,
S intentionally chooses to “tie her hands” and commits to disclose publicly every bit of information
that the experiment provides. It is the commitment assumption what makes this problem essentially
different from cheap-talk models. Intuitively, we see that now S has no “informational advantage”
over R at the moment when she picks her optimal strategy. One may then wonder whether this
informational leverage may mitigate the conflict of interests between the players and, therefore,
allow for more effective communication relative to the cheap-talk benchmark. It turns out that,
under certain conditions, this is indeed the case.

The benchmark described is known as Bayesian persuasion.13 An important advantage of
Bayesian persuasion over cheap-talk models is that, by choosing the information structure, the
Sender (1) decides exactly how posteriors are obtained and (2) implicitly explains the meaning of
each message to R. In this way, the sort of indeterminacy typically present in cheap-talk games
due to the endogenous meaning of messages is eliminated. Note that language continues to be
determined endogenously in equilibrium but now this is done only by S, not by both players si-
multaneously. Intuitively, when designing the experiment, the Sender tells the Receiver how to
interpret the messages that the experiment releases. A drawback of the Bayesian persuasion ap-

13 Kamenica and Gentzkow (2011) receive most of the credit for the study of these models. Rayo and Segal (2010)’s
paper explored similar ideas and appeared at approximately the same time.
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proach relative to the cheap-talk framework, though, is the suitability of the strong commitment
assumption to certain real-world environments. Also, assuming that an information structure, or
experiment, can reveal any information about the state implies making strong assumptions about
the technology behind the experiment/communication device.

The details that we now present are based on Kamenica and Gentzkow (2011)’s exposition. We
use the notation introduced earlier for the benchmark cheap-talk model, except that we now also
allow for the Sender to randomize between messages. Given a set of states of the world θ ∈Θ

and a set of messages m ∈ M, player S acquires an information structure by picking a collection
σ ≡ {σ(· | θ) ∈ ∆(M) : θ ∈Θ} of signals. A signal σ(· |θ) is a probability distribution where
σ(m |θ) indicates the probability that the experiment delivers message m when the true value of
the state is θ . Then, each given information structure σ chosen by the Sender induces on the Re-
ceiver a (Bayesian) posterior distribution µ(· |m)∈ ∆(Θ) for each m ∈M. It turns out quite conve-
nient here to denote posteriors as µm ≡ µ(· |m) just for expositional reasons. Since each message
m is heard with a certain probability, according to the prior and the picked information struc-
ture, it follows that each information structure induces a distribution over posterior distributions
µm. Specifically the probability that message m be delivered by the experiment—and, therefore,
that the posterior distribution µm be obtained—is described by g(m) =

∫
Θ

σ(m |θ) f (θ)dθ . Then,
clearly any distribution g(m) over posteriors induced by an information structure must satisfy the
following “Bayesian plausibility” condition: f (θ) =

∫
M µm(θ)g(m)dm for each θ ∈Θ . In other

words, induced posteriors must coincide “in average” with the prior.14 The Receiver chooses, for
each particular posterior distribution µm, an action âR(µm) that maximizes her expected utility, that
is,

âR(µm) ∈ argmax
a∈A

∫
Θ

µm(θ)uR(a,θ)dθ .

Then, S’s decision problem consists of choosing an information structure σ—or, equivalently, of
inducing a system of beliefs µ ≡ {µm ∈ ∆(Θ) : m ∈M}—that maximizes her ex-ante expected
utility, under the restriction of the “Bayesian plausibility” condition. That is, the Sender wishes to
solve the problem

max
σ

∫
M

g(m)

[∫
Θ

µm(θ)uS
(
âR(µm),θ

)
dθ

]
dm

s.t.: f (θ) =
∫

M
µm(θ)g(m)dm.

14 This “Bayesian plausibility” condition is just an adding up constraint. In fact, any distribution of posteriors such
that the induced posteriors are derived from the priors using Bayes’ rule satisfy by construction such a condition.
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To simplify notation, for a system of beliefs µ , let us denote

US(µm)≡
∫

Θ

µm(θ)uS
(
âR(µm),θ

)
dθ .

In words, US(µm) is the interim expected utility to the Sender, conditional on message m, when
S picks an information structure that induces the posteriors µm on the Receiver, and the Receiver
responds optimally given such posteriors. An information structure σ delivers information that
S would like to share if it induces (with positive probability g(m) > 0) a posterior distribution
µm that is better (at the interim stage) for S than keeping the prior f . Algebraically, S wishes to
publicly share the information provided by an experiment σ at the interim stage for some m ∈M

with g(m)> 0 if
US(µm)>

∫
Θ

µm(θ)uS
(
âR( f ),θ

)
dθ .

As to the Receiver, any information structure that delivers information different from the priors is
valuable to the Receiver. Notice that any posterior µm 6= f allows the Receiver to optimally choose
her action more suitably than f .

Given these details, the interesting result provided by Kamenica and Gentzkow (2011) works
as follows. Recall that S’s objective function is

V (µm)≡
∫

M
g(m)US(µm)dm,

so that the sender wishes to publicly share the information provided by an experiment σ at the
ex-ante stage if

V (µm)≥V ( f ) =
∫

M
g(m)US( f )dm =US( f ).

On the other hand, we know that the function US(µm) is convex in µm if

∫
M

g(m)US(µm)dm≥US

(∫
M

g(m)µmdm
)
=US( f ),

where the last equality above follows from the Bayesian plausibility condition. Almost by defini-
tion, therefore, convexity of US(µm) is the key feature that characterizes when the Sender wishes to
commit to publicly disclose an information structure more informative than the priors. Building on
this insight, Kamenica and Gentzkow (2011) then provide a mathematical characterization of the
Sender’s optimal information structure choice that relates the solution of its problem to the small-
est concave function greater than or equal to US(µm). Such a function of US(µm) is by definition
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known as the concave closure of US(µm).15 Following the concavification approach originally pro-
posed by Aumann and Maschler (1995), Kamenica and Gentzkow (2011) suggest a concavifiation
technique to study how the sender optimally designs information structures.

8.1.5. Verifiable Information

Bayesian persuasion enhances communication relative to cheap-talk because of the key commit-
ment assumption. Without the commitment assumption, Senders may have incentives to truthfully
reveal their private information when there are exogenous restrictions to the messages available to
them. In particular, Grossman (1981), Milgrom (1981), and Milgrom and Roberts (1986) demon-
strate that fully revealing equilibrium exist if Senders are restricted to provide information that
is verifiable. The typical game explored to study communication when information is verifiable
considers that the set of states Θ = {θ1, . . . ,θK} is finite and ordered, and that the set of available
messages M is the set of all subsets of Θ , that is, M = 2Θ . Suppose that S’s preferences do not
depend on θ and that she always prefers R to take higher actions. In most applications, states
correspond to qualities of a good and actions correspond to the price the Receiver is willing to
pay for such a good. While the Receiver is assumed to wish to match the price with the quality
of the good, the Sender wishes that the Receiver chooses the highest price. The game proceeds
as follows. Player S learns the true value θ of the state and then reports a message m under the
constraint that θ ∈m. Given this, player R uses S’s message to update her priors (following Bayes’
rule) and takes an action.

In this game, equilibrium behavior features “skepticism” by R and S’s optimal strategy allows
R to learn the true value of the state. To see how the mechanism behind this kind of equilibria
works, assume that R regards a message m ∈M = 2Θ as indicating that θ is the lowest element in
m (skepticism). Then, notice that the highest type θK of S wishes to separate herself by choosing
m = {θK}. Since R takes action a = minθ m in this equilibrium proposal, S’s type θK−1 wishes
to send the message m′ = {θK−1}. The Sender would not receive a higher payoff by deviating
from this equilibrium proposal. Notice that the Sender would obtain a lower payoff if she deviates
to sending a message m′′ that includes types lower than θK−1 as, in this case, minθ m′′ < θK−1.
Also, the Sender would not obtain a higher payoff by deviating to a message that contains types
higher than θK−1. By iterating this argument from higher to lower types, it follows that truthful
communication “unravels” from the top of the set of states in this kind of equilibria.

15 Formally, the concave closure of US(µm) is the supremum sup
{

y : (µ,y) ∈ co
(
US(µm)

)}
, where co

(
US(µm)

)
is

the convex hull of the graph of US(µm).
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8.2. Mechanism Design

In many interactions under uncertainty with conflicting players, it is usually the case that some
players have no control over how their opponents align their actions with the state of the world
but, at the same time, they enjoy some power to choose or affect (at least some of the) rules of
the game in which the players are involved. Prominent examples where a player cannot control
how her opponents’ actions are aligned with the state happen because the player cannot observe
directly either the state or her opponents’ actions. We have already discussed some of these ex-
amples: buyers cannot observe the quality of a good, firms cannot observe the productivity of
job candidates, patients cannot observe the medical biases of doctors, insurance companies cannot
observe the initial health of the insured, or their disease prevention habits, shareholders cannot
observe the productivity of the company’s executives, or their financial decisions, firm’s owners
cannot observe the decisions of their managers, governments cannot observe the actual production
costs in a natural monopoly, or the monopolist’s efforts to reduce such costs. These situations
are particularly relevant because, as we have already seen for the case of adverse selection, they
typically lead to socially inefficient outcomes. In the above mentioned examples, we also notice
that the uninformed party can, to some extent, affect the rules of the game. Customer organiza-
tions can promote rules to regulate markets, firms can decide how they evaluate their candidates,
insurance companies can decide over their insurance policies and contract terms, shareholders can
choose how their executives are evaluated and remunerated, governments can regulate natural mo-
nopolies. In short, it is usually the case that one party has an “information advantage” over the
other while, at the same time, the later holds some “legal rights” over the former. There is a broad,
and systematically structured, approach that captures this sort of situations and seeks to deal with
the socially undesirable outcomes caused by informational asymmetries. This approach is known
under the synonymous terminologies of mechanism design, contract theory, or institutional de-

sign.16 The basic rationale behind the mechanism design approach is that the party with the power
to “design the rules of the game” does so in a way such that makes it beneficial for the informed
party not the deviate much from designer’s objectives. In this way, by designing the rules of the
game (or, synonymously, mechanism or contract), the designer imposes additional incentives over
the informed party that make the final incentives of both parties somehow more compatible than
they were initially. Not surprisingly, these rules are generally known as incentive compatibility

conditions. Importantly, by reducing the final discrepancies in incentives, incentive compatibility

16 Because of their historical developments, there are some subtle differences between the focus of mechanism
design and contract theory models. Their substances, or more philosophical reasonings, though, are indistinguishable
similar. These notes considers the three terms as synonymous.
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conditions help alleviate the initial inefficiencies of the interactions.

8.2.1. Mechanism Design with Adverse Selection (or Hidden Types)

When conflicting players interact and some of them hold more information than others, the bet-
ter informed ones naturally have incentives to hide such information, or to lie about it. By doing
so, they typically seek to benefit from their informational advantage. We have already explored
this issue when players have some private information about an exogenous payoff-relevant char-
acteristic, modeled through types or states of the world, in the context of adverse selection. We
have also seen how communication, in the form of Sender-Receiver games, can somehow miti-
gate the inefficiencies that arise in these situations. In fact, the sort of instruments that we already
introduced through Sender-Receiver games can be regarded as special cases of the broad mecha-
nism design approach. When considering Sender-Receiver games, it is usually the case that one
pays more attention to positive features, such as the description of equilibrium and its properties.
When pursuing the classical mechanism approach, one is typically more concerned about norma-
tive features, addressing directly inefficiency issues. Rather than the essence of their settings and
functioning, it is a certain distinction in focus/perspective what makes strategic communication
models somewhat different from mechanism design models.

There is nonetheless a plethora of (seemingly) similar models that deal with how a party may
affect the incentives of others who held private information, through mechanisms or contracts,
to mitigate the initial conflict of interests and achieve socially desirable goals. The distinctions
between the models are mainly based on who controls what, who communicates with whom, or
what can be communicated. For instance, Bayesian persuasion models and mechanism design
models are tightly connected. Let us summarize some of these interrelated literatures and present
their differences.

8.2.2. Bayesian Games with Communication

A strand of the mechanism design literature that deals with the incentives of informed players
to reveal publicly their information considers that the “designer” is a social planner that has no
preferences over the actions chosen by the players and that it is only interested in achieving so-
cially desirable outcomes. Unlike the Bayesian persuasion models, the designer cannot provide
the players with additional information about the relevant state but it can affect the “mechanism”
under which the players choose their actions. These models are known as Bayesian Games with
Communication.
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Let us go back to the formulation of Bayesian Games seen in chapter 5. We will enlarge a
little bit the model explored then. Also, to work with a notation similar to that developed earlier in
Sender-Receiver games, consider that each player i∈N = {1, . . . ,n}must choose a payoff–relevant
action ai ∈ A and that the players care about an unknown state of the world θ ∈Θ as well. The
payoff to each player i is given by a utility ui(a,θ), where a = (ai)i∈N is an action profile. The
players commonly known a prior distribution p ∈ ∆(Θ) about θ . Suppose that for each state
realization θ ∈Θ , each player i privately learns a type ti ∈ Ti that describes the information that
the player initially has about θ .

One way of making the “states of the world” and “players’ types” formulations compatible
is that of considering a mapping τ : Θ → T , with T = ×i∈NTi, that specifies a type profile t =

(t1, . . . , tn)= (τ1(θ), . . . ,τn(θ))= τ(θ) for each state realization θ . Assume that: (1) τi(θ) 6= τi(θ
′)

implies θ 6= θ ′ for each i ∈ N, so that no different types of any player can follow from a common
state of the world, and (2) θ 6= θ ′ implies τ(θ) 6= τ(θ ′).17 In this context, a standard Bayesian
game that captures how the players choose their actions consists of Γ =< N,A,T,π,(ui)i∈N >,
where the joint probability distribution over types π is related to the prior over states p according
to the function τ as follows:

π(τ(θ))≡ p(θ) for each θ ∈Θ .

The prior p, the set of type profiles T , and the function τ define an information structure in this
setting. Intuitively, an information structure describes what each player knows about the state,
what each player knows about what each other player knows about the state, and so on.

Now, following Myerson (1982) and Forbes (1986),18 consider a modification of this game
where, prior to choosing her action, each player i is allowed to report confidentially a message mi ∈
Mi ≡ Ti about her type to an external mediator. The players report their messages simultaneously
to the mediator who then submits a private recommendation ri(m) to each player i, based on the
profile of messages m = (m1, . . . ,mn) received from the players. Finally, each player i chooses her
action based on the recommendation ri(m) that she hears from the mediator. Let r = (ri)i∈N ∈ A be
a profile of recommendations by the mediator and let σ(r |m) be the probability that the mediator
recommends action profile r when it receives a message profile m from the players. The conditional
probability σ(r |m) specifies a mechanism in this environment. Importantly, the players’ types are

17 In other words, τ is assumed to be a one-to-one function. It is not required, though, that each particular τi be
one-to-one, that is, different states of the world can provide the the same type to any given player.

18 See also Myerson (1991), Chapter 6.3.
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assumed to be unverifiable by the mediator so that any player can lie about her type. The mediator
is not modeled as a player with incentives in this game.

Notice that, rather than a model of communication between the different players, as we explored
in Sender-Receiver games, we are considering here a model of (private bilateral) communication
between each player and some external (quite metaphorical) mediator. Also, only the player can
provide the mediator with additional information as the mediator has no information of its own to
share with the players.

Formally, we are enlarging the original Bayesian game Γ into another Bayesian game Γ̂ with
communication. The new Bayesian game Γ̂ is specified as

Γ̂ =< N, Ŝ,T,π,(ûi)i∈N > .

Here, Ŝ = ×i∈N Ŝi is the set of the players’ pure-strategy profiles and (ûi)i∈N is the list of their
utility functions. More specifically, the set Ŝi of pure strategies for each player i in this enlarged
Bayesian game is Ŝi = {(mi,δi) : mi ∈ Ti, δi : Ai→ Ai}, where mi is a message that player i reports
to the external mediator (with the interpretation that mi = ti means “my type is ti”) and δi(ri) is
an action chosen by player i upon hearing recommendation ri from the mediator. Each function
δi : Ai→ Ai is known as a decision rule. Let δ ≡ (δi)i∈N be a profile of decision rules. In addition,
each utility function ûi : Ŝ→ R for the modified Bayesian Game is specified as

ûi(m,δ | t)≡ ∑
r∈A

σ(r |m)ui(δ (r),τ−1(t)).

This is the expression for player i’s (ex-post) expected utility when the players report message
profile m to the mediator and choose a profile of decision rules δ , conditional on the the players
having a type profile t. Since τ is one-to-one, we have that θ = τ−1(t) gives us the unique state of
the world that corresponds to the type profile t. However, players do not actually know the types
of their opponents. Therefore, to explore the BNE of this game, we need to consider the (interim)
expected utility of each player:

Ûi(m,δ | ti) = ∑
t−i∈T−i

πi(t−i | ti)ûi(mi,m−i,δi,δ−i | ti, t−i)

= ∑
t−i∈T−i

∑
r∈A

πi(t−i | ti)σ(r |mi,m−i)ui(δi(ri),δ−i(r−i),τ
−1(ti, t−i)).

Of course, the appropriate equilibrium notion to solve this enlarged Bayesian game is that of BNE.
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We then assume that the players act according to the BNE requirements that, conditional on the
private information described by each type ti, each player i chooses her message mi and obeys the
mediator according to the decision rule δi(ri) in a way such that, given the (optimal) choices of
the other players, i has no (strict) incentives neither to report any other message nor to disobey the
mediator’s recommendation.

In general, these equilibrium conditions give us many BNEs. As mentioned earlier, the mecha-
nism design approach is interested mainly in normative goals. To this end, let us now pay attention
to a subset of BNEs for the proposed modified game where each player in fact reports truthfully,
mi = ti for each ti ∈ Ti, and follows the mediator’s recommendation, δi(ri) = ri for each ri ∈ Ai. By
doing so, each player would reveal her private information to the others in equilibrium, thus elim-
inating the initial informational asymmetries and allowing for a socially efficient outcome. Then,
taking this sort of BNE as the attainable goal of a social planner, the mechanism design approach
asks what mechanisms σ(r |m) would induce the players to play according to such BNEs. We
then say the the decision rule or mechanism σ is incentive compatible if it induces a BNE of the
Bayesian game Γ̂ with communication where each player reports honestly her type and follows
the mediator’s recommendation. Formally, σ∗ is incentive compatible if for each type ti ∈ Ti of
each player i ∈ N, we have:19

Ûi(ti, t−i,ri,r−i | ti)≥ Ûi(m′i, t−i,δi(ri),r−i | ti) ∀m′i ∈ Ti ∀δi(ri) ∈ Ai,

or, equivalently,

∑
t−i∈T−i

∑
r∈A

πi(t−i | ti)σ∗(r | ti, t−i)ui(ri,r−i,τ
−1(ti, t−i))≥

∑
t−i∈T−i

∑
r∈A

πi(t−i | ti)σ∗(r |m′i, t−i)ui(δi(ri),r−i,τ
−1(ti, t−i)) ∀m′i ∈ Ti ∀δi(ri) ∈ Ai.

If σ∗ is incentive compatible according to the condition above, we also say that σ∗ implements

(pure-strategy) BNEs where the players reveal their private information and follow the mediator’s
recommendations.20

Notably, even when one restricts attention to such (socially desirable) BNEs where mi = ti and
δi(ri) = ri for each player i, there is a profound multiplicity of BNEs that can be implementable.
Pretty much like in the case of cheap-talk games, this is due to the fact that messages have no

19 Attention is restricted to pure-strategy BNE in this definition of incentive compatibility.
20 This strand of the mechanism design literature is also known as Bayesian implementation.
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intrinsic meaning here and, in particular, each player can reveal completely her type to the mediator
by picking a different message for each different type realization. Fortunately, unlike cheap-talk
situations, for a given selected mechanism, here the players alone are the ones who determine
the amount of information transmitted. Since the designer receives no payoffs in this setting, the
amount of information revealed is not determined simultaneously by Sender and Receiver, only by
the Sender. This simplifies the equilibrium indeterminacy problem, relative to cheap-talk models,
and allows for a set of convenient results commonly known under the term revelation principle

arguments. The Revelation principle was first proposed by Aumann (1974), in the context of his
CE notion proposal, and subsequently by Myerson (1991) (Chapter 6.3), for the case of Bayesian
games with communication we are presenting now. For Bayesian games with communication, the
revelation principle works as follows. Suppose that we consider a more general communication
system between each player i and the mediator where the player can send messages mi ∈Mi 6= Ti

and the mediator can make recommendations ri ∈ Ri 6= Ai. Consider a mechanism σ∗ that is
incentive compatible under such a broader communication system. Then, the revelation principle
shows that there exists another mechanism σ∗∗ which is also incentive compatible for the narrower
communication system where mi ∈ Ti and ri ∈ Ri 6= Ai, and that provides the player with the same
expected utility as σ∗. In this way, there is no loss of generality in considering that the players
use a language where they just communicate their types and the mediator directly communicates
actions.

Finally, determining which mechanisms σ are incentive compatible depends crucially on the
information structure described by (p,T,τ). In practice, this is problematic since information
structures are in general hard to observe. Interestingly, following the global games approach pre-
sented in Section 6.3, Bergemann and Morris (2013) propose a benchmark that allows one to
provide conditions under which the players wish to follow the external mediator recommendations
for regardless of the information structure.

8.2.3. Information Design

To fix ideas, recall that Bayesian persuasion considers situations where a Sender chooses infor-
mation structures to provide a Receiver with additional information about the state of the world.
To “homologate terms” with the approach that we now present, let us refer here to a Sender as an
information designer.21 In the Bayesian persuasion literature, the designer has incentives of her
own regarding the Receiver’s choice of actions and the state of the world. Nonetheless, this strand

21 In mechanism design models, it is also common to use the respective terms Principal for the Sender, or informa-
tion designer, and Agent for the Receiver.
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of the literature does not consider cases where several (possibly conflicting) Receivers interact
among them in their actions. A crucial feature of this literature is that the designer can (ex-ante)
commit to provide information about the state—in spite of the discrepancy between her ex-ante
and interim objectives.

On the other hand, recall that Bayesian games with communication consider that the designer
does not have incentives of her own regarding the choice of actions of the Receivers and the state
of the world. In this literature, the designer cannot either provide Receivers with additional infor-
mation about the state. However, this literature does cover situations where the Receivers interact
among them in their choices of actions. Another key feature of this literature is that the designer
can (ex-ante) commit to make recommendations based on the information disclosed by the Re-
ceivers but not on the realization of the state.

Intuitively, Bayesian persuasion explores situations where the designer chooses an experiment,
or trial, that discloses publicly information about an unknown issue whereas Bayesian implemen-
tation studies situations where the designer chooses the rules of an interaction in ways such that
the final outcome crucially depends on how private information is revealed. A typical example of
the latter class of situations is that of a public auction where its rules induce the bidders to reveal
their true valuations for the auctioned good.

There is also a recent, broader approach, that covers both situations where the designer can pro-
vide Receivers with additional information about the state and the Receivers strategically interact
among them in their action choices. Bergemann and Morris (2016) coin this class of problems as
information design problems. As in the Bayesian persuasion approach, a crucial assumption of the
information design approach is that the designer can (ex-ante) commit to providing the Receivers
with additional information about the state of the world. Interestingly, rather than focusing on
induced posteriors, the information design approach relies on action recommendations and, specif-
ically, it makes use of an extension of the CE notion used in games with complete information to
incomplete information settings, which is termed as Bayesian Correlated Equilibrium.

The following model of information design follows Bergemann and Morris (2019)’s exposi-
tion. There is finite set Θ of states θ . There is a set N = {1, . . . ,n} of players and each player i

must choose an action ai from a finite set of actions Ai. The payoff to each player i is given by a
utility function ui(a,θ), where a = (ai)i∈N . The state θ is picked according to a prior probability
distribution p(θ)> 0. There is also an information designer, whose payoffs are described by a util-
ity function v(a,θ), that can (ex-ante) commit to provide the players with additional information
about θ . Notice that, other than the fact that now there are several players that interact among them
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in their choice of actions, the setting is similar to the one presented earlier to describe Bayesian
persuasion.

An information structure is described the prior p, by a finite set Ti of types ti for each player
i, and by a collection of (conditional) probability distributions {π(· |θ) ∈ ∆(T )}

θ∈Θ
over type

profiles t = (ti)i∈N ∈ T = ×i∈N . Thus, π(t |θ) is the probability that the players have type profile
t when the realization of the state is θ . As in the case of Bayesian games with communication, an
information structure (p,T,π) describes what each player knows about the state, what each player
knows about what other players know about the state, and so on.

The game that describes the information design problem proceeds as follows. First, the infor-
mation designer chooses and commits to a decision rule

σ ≡ {σ(· | t,θ) ∈ ∆(A)}(t,θ)∈T×Θ
,

where each σ(a | t,θ) is the probability that the chosen decision rule delivers action recommenda-
tion a to the players when they have private information described by t and the true realization of
the state is θ . By making a decision rule conditional on the state of the world, the designer can
choose the amount of additional information that it provides to the players. Then, the true value
θ of the state is realized and the players learn their types according to the conditional distribution
π(t |θ). After this, the players receive the action recommendations that the decision rule σ(a | t,θ)
discloses. Finally, the players pick their optimal actions, based on the prior and the action recom-
mendations, and obtain accordingly their payoffs. Given this game, we say that the decision rule
σ is incentive compatible22 if σ∗(a∗ | t,θ) > 0 for some a∗ = (a∗i ,a

∗
−i) implies that, for each type

ti ∈ Ti and for each player i ∈ N, we have

a∗i ∈ argmax
ai∈Ai

∑
θ∈Θ

p(θ) ∑
t−i∈T−i

π(t |θ) ∑
a−i∈A−i

σ
∗((a∗i ,a

∗
−i) | t,θ)ui(ai,a∗−i,θ). (8.4)

In other words, if an incentive compatible decision rule σ∗ recommends an action profile a∗ with
positive probability, then it must be the case that no player i has (strict) incentives to choose any
other action ai 6= a∗i , given her type ti. Using a revelation principle argument to ignore more
complex communication systems and to solve equilibria indeterminacy issues, Bergemann and
Morris (2016) state that, without loss of generality, σ∗ is a Bayes Correlated Equilibrium (BCE)
if an only if it is incentive compatible. The condition Equation 8.4 gives us a restriction that the
decision rule chosen by the designer must satisfy in order for the players to actually follow her

22 Bergemann and Morris (2016) term this incentive compatibility condition as obedience condition.
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recommendation. To complete the description of the model, we need an objective function for the
designer. The designer wishes to choose decision rules that maximize her (ex-ante) expected utility
given that the players follow her recommendations. Specifically, the designer’s problem is

max
σ

∑
θ∈Θ

p(θ) ∑
t∈T

π(t |θ) ∑
a∈A

σ(a | t,θ)v(a,θ)

s.t.: a∗i ∈ argmax
ai∈Ai

∑
θ∈Θ

p(θ) ∑
t−i∈T−i

π(t |θ) ∑
a−i∈A−i

σ
∗(a∗ | t,θ)ui(ai,a∗−i,θ).

(8.5)

Let us now explore the similarities between the key incentive compatible condition in Equa-
tion 8.4 and (1) the CE’s key condition and (2) the optimality condition imposed on the Receiver
in the Bayesian persuasion approach.

First, consider the complete information version of the game presented above, so that Θ =
{

θ̄
}

,
for some state value θ̄ . Then, the set of types of each player i collapses into a trivial set Ti = {t̄i},
for some t̄i, as well. The information structure (p,T,π) in this particular case satisfies p(θ̄) = 1
and π(t̄ | θ̄) = 1. As a consequence, the incentive compatibility condition in Equation 8.4 requires
now

∑
a−i∈A−i

σ
∗(a∗i ,a

∗
−i)ui(a∗i ,a

∗
−i,θ)≥ ∑

a−i∈A−i

σ
∗(a∗i ,a

∗
−i)ui(ai,a∗−i,θ) ∀ai ∈ Ai

where σ ∈ ∆(A) is now a joint probability distribution over action profiles a. Then, by dividing
the inequality above over the (marginal) probability ∑ai∈Ai σ∗(ai,a−i)> 0, the required condition
can be rewritten as

∑
a−i∈A−i

σ
∗(a∗i |a∗−i)ui(a∗i ,a

∗
−i,θ)≥ ∑

a−i∈A−i

σ
∗(a∗i |a∗−i)ui(ai,a∗−i,θ) ∀ai ∈ Ai,

a condition formally identical to the one derived earlier in the definition of CE.

Secondly, consider the one-player version of the game presented above (n = 1 so that i = R)
and, in consonance with the tools typically developed to study Bayesian persuasion models, sup-
pose that the information designer chooses a collection σ ≡{σ(· | θ) ∈ ∆(M) : θ ∈Θ} of signals.
Again, a signal σ(· |θ) is a probability distribution where σ(m |θ) indicates the probability that
the experiment delivers message m when the true value of the state is θ . Then, each given informa-
tion structure σ chosen by the Sender induces on the Receiver a posterior distribution µm ∈ ∆(Θ)

over states θ , for each m ∈M. Then, the (unique) Receiver chooses for each µm ∈ ∆(Θ) an action
âR(µm) that maximizes her expected utility ∑a∈A µm(θ)uR(a,θ). Then, following the benchmark
model of Bayesian persuasion, the information designer must choose an information structure σ
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that maximizes her ex-ante expected utility, under the restriction of the “Bayesian plausibility”
condition:

max
σ

∑
M

g(m)∑
Θ

µm(θ)v
(
âR(µm),θ

)
s.t.: f (θ) = ∑

M
µm(θ)g(m).

Since the “Bayesian plausibility” condition is satisfied for any information structure σ that leads to
a collection of posteriors {µm} through Bayes’ rule, let us simply focus on the objective function
of the Sender’s problem. Using Bayes’ rule, such an (ex-ante) expected utility can be rewritten as

∑
M

g(m)∑
Θ

σ(m |θ)p(θ)
g(m)

v
(
âR(µm),θ

)
= ∑

Θ

p(θ)∑
M

σ(m |θ)v
(
âR(µm),θ

)
.

This expected utility is analytically equivalent to the objective function of the designer’s problem
specified in Equation 8.5 for the particular case where players are uncertain only about the stage.
As to the incentive compatibility condition, note that, by picking an action âR(µm) that maximizes
her expected utility ∑a∈A µm(θ)uR(a,θ), the Receiver is, equivalently, choosing an action to max-
imize

∑
a∈A

σ(m |θ)p(θ)
g(m)

uR(a,θ).

By dividing such an objective function by the positive term g(m), it follows that the Receiver must
choose an action âR(µm) that maximizes the objective ∑a∈A σ(m |θ)p(θ)uR(a,θ) for each θ ∈Θ

and each m ∈ M such that g(m) > 0. Therefore, by averaging over θ according to priors, we
obtain that, for each given message m heard with positive probability, action âR(µm) maximizes
the objective function ∑a∈A σ(m |θ)p(θ)uR(a,θ) if an only if it maximizes the ex-ante expected
utility

∑
θ∈Θ

p(θ) ∑
a∈A

σ(m |θ)uR(a,θ).

Solving this problem is analytically equivalent to satisfying the incentive compatibility condition
stated in Equation 8.4 for the case where the players are initially uncertain only about the state θ .

We observe that Bayesian persuasion is a particular case of the information design approach
when there is a single Receiver and, in addition, she is only initially uncertain about the state. Also,
we can notice that the required incentive compatibility condition for the Receiver to be willing to
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choose her action after learning the information disclosed by the Sender is closely related to the
CE solution concept presented in Section 4.6.

8.2.4. Mechanism Design with Moral Hazard (or Hidden Actions)

Another usual type of asymmetric, or hidden information, problems concern endogenously cho-
sen actions rather than exogenous characteristics. In theses cases, the less informed players are
restricted in ways such that they cannot monitor perfectly the actions taken by the better informed
ones. For example, insurance companies cannot monitor whether their insured are careful enough
so as to prevent accidents, shareholders cannot monitor whether the firm’s executive board makes
the most profitable decisions, or land owners cannot monitor whether their hired farmers work
diligently to obtain good harvests. When players interact and some of them hold more information
than others about the actions that they choose, we refer to this kind of situations as moral hazard.
Pretty much like the situations of adverse selection, moral hazard leads to socially undesirable, or
inefficient, outcomes. Moral hazard can be viewed as another failure of markets caused by asym-
metries of information between contracting parties. Together with adverse selection, moral hazard
and its implications are central topics in the field of information economics.

The mechanism design approach is also useful to deal with the inefficiencies that arise with
moral hazard. One way of thinking about mechanism design in moral hazard environments is that
of considering certain relationships between parties that are actually contractible in real world in-
teractions. Such relationships are contractible because they can be naturally related to observable
(or verifiable) outcomes. For instance, although shareholders cannot observe the decisions taken
by the members of the executive board (or, e.g., whether such decisions follow the prescriptions of
economic theory), they can observe the actual profits of the company at the end of the term. Like-
wise, although the insurance company cannot observe how careful a certain driver is, it can observe
her record of accidents. A university cannot observe the effort exerted by its researchers but it can
observe the number and qualities of their publications. Then, contracts can be me made contingent
on such type of observable (or verifiable) features. Once a particular set of relationships (which
must be based on observables) is established, we can then model formally such a contract as a game
and explore it using our game theoretical tools. In this way, a mechanism (or contract/institution)
is defined as the rules of a game. Rather than solving games, though, the approach taken by mech-
anism design proceeds as follows. Given the constraints imposed to an interaction by the physical
environment, or by the informational/cognitive endowment of some players, mechanism design
considers a set of outcomes that are socially desirable and then ask what games will deliver such
outcomes as solutions when the players interact. In this sense, mechanism design seeks to propose
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rules for games such that, once the involved parties play them, some socially desirable outcomes
will be achieved. This logic behind mechanism design can be traced back historically to market
socialism concerns where social philosophers realized that the existing markets were just one of
some plausible mechanisms. Their proposal was then to consider other mechanisms that enabled
more efficient outcomes for the sort of market interactions captured by the original mechanism. In
practice, this is achieved through market regulation, or certain interventions, or modifications, to
the rules under which such markets operate. The tricky exercise that mechanism design pursues
then is how to propose the precise interventions that can lead to more efficient outcomes. The
question is so good, and the taken approaches have proved so insightful, that this area of research
has received immense recognition in economics.23 Alongside with their closely related literatures
of information design and Sender-Receiver games, mechanism design is currently one of the most
prolific fields of research in economics.

The classical model of moral hazard24 considers two players, a Principal (or owner of a firm)
and an Agent (or manager of the firm) that can potentially be involved in a certain project. The
Principal hires the Agent to choose a certain action a ∈ A = [a,a]⊂ R+, usually interpreted as an
effort level. Each action a is a (pure) strategy for the Agent and it yields a probability distribution
over the payoffs, or revenue, that the Principal receives from the project. Specifically, the revenue
of the Principal is given by q = q(a,ε) ∈ Q = [q,q] ⊆ R+, where ε is a random variable with
(commonly) known distribution. The Principal “legally owns the rights” to the revenue and can
decide how to assign a part of it to the Agent. In this sense, the Principal enjoys a certain bargaining
power to set up the project relationship (or contract) with the Agent. In most interesting cases, the
action a chosen by the Agent is not observable by the Principal but the Principal can observe
the revenue q. Therefore, any enforceable contract can be made contingent only on the revenue.
Conditional on the observed revenue the Principal gives the Agent a payment w = w(q), so that a
(pure) strategy for the Principal is specified by a function w : Q→ R. A strategy for the Principal
w(·) is also known as a payment scheme. Use W to denote the set of all feasible payment schemes.

The Principal and the Agent have a conflict of interests respect the Agent’s choice a ∈ A. The
payoffs of the Agent are u(w)− c(a), where u(w) is the utility from payment w and c(a) is the
cost from exerting an effort level a. It is usually assumed that the functions u and c are twice-

23 For instance, recognition in the form of Nobel awards has been paid to researchers that have contributed to mech-
anism design, either from more theoretical or more applied perspectives: Leonard Hurwicz, Eric Maskin, and Roger
Myerson (2007); Alvin Roth and Lloyd Shapley (2012); Jean Tirole (2014); and Oliver Hart and Bengt Holmström
(2016).

24 These notes present a continuous choice version of the classical model. Beyond technical differences, versions
where decisions are taken over finite sets work similarly to the setting presented here.
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continuously differentiable with u′ > 0 and u′′ < 0, whereas c′ > 0 and c′′ > 0. That, is the Agent
is assumed to be risk-averse and to face convex costs from her effort. The Principal’s utility is the
revenue less the payment to the Agent, v(a,w) = q(a,ε)−w. Thus, the Principal is assumed to
be risk-neutral.25 Assume that the random variable ε is such that q is a continuous random vari-
able with (conditional) density f (q |a) > 0 on Q. Assume also that f (q |a) is twice-continuously
differentiable with respect to a.

First-Best Benchmark: Observable Actions

Consider first the (hypothetical) case where the Principal can in fact observe (or verify) the
effort choice a. In this case, the contracting parties have symmetric information and one expects
that the Agent be remunerated according to the marginal return from her effort. Recall that, under
the logic that she holds the legal rights about what the project delivers, the Principal has the power
of setting a contract and submitting it to the Agent, who must then decide whether to accept it or
not. The contract is assumed to be legally enforceable under the terms that it states. Specifically,
the problem that the Principal solves, to set up the contract, is to pick an effort level a ∈ A and
a payment scheme w(·) ∈ W so as to maximize her expected utility under one condition. This
condition is known as Participation Constraint (PC) and its goal is to ensure that the Agent is in
the first place interested in signing up the contract. The PC condition requires that the expected
utility of the Agent be no less than a certain exogenous minimum utility level U . The utility level
U can be interpreted as the utility that the Agent can secure just by choosing an alternative outside
option, rather than participating in the Principal’s project. The Principal’s goal is to solve

max
{a,w(·)}

∫ q

q
f (q |a)[q−w(q)]dq

s.t. :
∫ q

q
f (q |a)u

(
w(q)

)
dq− c(a)≥U .

(8.6)

The Lagrangian associated to the problem in Equation 8.6 is

L
(
a,w(·);λ

)
=
∫ q

q
f (q |a)

[
q−w(q)+λu

(
w(q)

)]
dq−λc(a)−λU .

25 Risk-neutrality for the Principal is assumed for tractability but, more importantly, it is the most innocuous as-
sumption regarding risk attitude we can impose in this environment. Since contracting on the effort level a will be
unfeasible to the Principal, she will be harmed by the informational advantage that the Agent possesses. This consti-
tutes the central efficiency message of the model. Considering risk-aversion would only exacerbate the damage to the
Principal in this environment under uncertainty and, more crucially, asymmetric information.
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Considering interior solutions, the (pointwise) F.O.C. with respect to w(·) gives us

λ = 1/u′
(
w(q)

)
for each q ∈ Q.

This condition is known as the Borch rule and describes optimal risk sharing. In particular, it
follows that the optimal payment scheme w(q) must be constant, independently of the obtained
revenue q. Also such a condition implies that the PC condition must be binding at the optimal
payment scheme so that the Agent is indifferent between signing up the contract or choosing the
outside option. Let us use the short-hand notation fa(q |a) = ∂ f (q |a)/∂a for the partial derivative
of the conditional density of the revenue with respect to the action choice. Then the F.O.C. with
respect to a yields ∫ q

q
fa(q |a)

[
q−w(q)+λu

(
w(q)

)]
dq = λc′(a).

Let w̃ be the constant payment that solves the equation λ = 1/u(w). Then, by combining both
F.O.C.s, we obtain the condition that characterizes optimal payment w̃ and effort ã in the First Best
contract:

w̃ =
∫ q

q
fa(q | ã)qdq+

u(w̃)− c′(ã)
u′(w̃)

.

Intuitively, the optimal constant payment equals the expected revenue, conditional on the optimal
effort, plus the (normalized) excess of the Agent’ utility over her marginal cost.

Second-Best Benchmark: Unobservable Actions

Consider now the (more realistic) case where the Principal cannot observe (or verify) the effort
choice a and can only observe the revenue q that the project yields. The Principal “designs” the
contract and offers it to the Agent who then decides whether or not to accept it. Again, the contract
is assumed to be legally enforceable under the terms stated in it. The problem that the Principal
now faces, when writing down the contract, is to pick an effort level a ∈ A and a payment scheme
w(·) ∈ W so as to maximize her expected utility under the PC and an another, more interesting,
restriction, known as Incentive Compatibility (IC). Following the same rationale that we explored
for mechanism design with hidden types, the IC condition seeks that the Agent be interested in
choosing her effort level conditional on the payment scheme that she receives from the Principal.
Notice that we are considering an approach where one player, the Principal, optimally chooses the
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strategies of both players. Algebraically, the Principal wishes to solve

max
{a,w(·)}

∫ q

q
f (q |a)[q−w(q)]dq

s.t. :
∫ q

q
f (q |a)u(w(q))dq− c(a)≥U ; (PC)

a ∈ arg max
a′∈[a,a]

∫ q

q
f (q |a′)u(w(q))dq− c(a′). (IC)

(8.7)

As we already discussed with respect to the case of hidden types, the logic behind the mechanism
design approach is that the designer puts herself in the Agent’s position and discounts the Agent’s
optimal behavior under the mechanism that the designer establishes. In this way, starting from an
ex-ante stage with conflicting interests, a mechanism seeks to align (to a certain extent) the player’s
interests at the interim stage through the (designed) incentives that it imposes on them.

Let us solve the problem in Equation 8.7 by following an intuitive method known in the litera-
ture as the first order approach to the Second Best design problem.26 This method considers that
we solve first the Agent’s decision problem stated in the IC condition. The F.O.C. to the Agent’s
problem is ∫ q

q
fa(q |a)u(w(q))dq− c′(a) = 0. (8.8)

We then can solve the Principal’s problem subject to the PC constraint and to the condition derived
in Equation 8.8 above. The Lagrangian associated to such a problem is

L
(
a;λ ,µ

)
=
∫ q

q
f (q |a) [q−w(q)]dq+λ

[∫ q

q
f (q |a)u

(
w(q)

)
dq−λc(a)−λU

]

+µ

[∫ q

q
fa(q |a)u(w(q))dq− c′(a)

]
.

Then, by considering interior solutions, the (pointwise) F.O.C. with respect to w(·) gives us the
condition that characterizes the optimal contract for the Second Best scenario:

1
u′
(
w(q)

) = λ +µ
fa(q |a)
f (q |a)

. (8.9)

26 Though intuitive, formal application of this method yet requires that we impose further conditions on the condi-
tional density f (q |a).
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To deliver its main insights, the classical model of moral hazard makes use of an intuitive
and appealing assumption, known as the monotone likelihood ratio condition (MLRC). Formally,
this assumption requires that, for each a ∈ A, the likelihood ratio L(q;a) ≡ fa(q |a)/ f (q |a) be
non-decreasing in q ∈ Q. The intuition behind this condition is simply that higher effort levels are
associated to higher (conditional) probabilities of achieving higher revenues, relative to lower effort
levels. To put it bluntly, even though the presence of uncertainty due to the random component
ε can make it possible for poor revenue realizations even when the Agent is doing her best, both
players commonly agree on that higher effort levels are more likely to allow higher revenues than
lower effort choices. Provided that λ ,µ > 0 in the Second Best scenario,27 the condition obtained
in Equation 8.9, together with the MLRC assumption, leads to that the optimal payment w(q) must
vary with q and, in particular, it must be non-decreasing in q. Intuitively, the optimal contract
agreed by both parties leads to that remunerations will be based on the observed revenue in a quite
natural way. It is not only the case that the Agent will receive a higher payment because the “pie” is
higher. More crucially, by knowing that the payment is positively related to the observed outcome
of her effort, the Agent will be suitably incentivized (at the interim stage) so as to mitigate the
profoundly misaligned incentives which are caused in this environment by having both conflicting
preferences and different information about actions.

27 This is not evident and requires formal proof.
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